Aims/hypothesis Metformin is widely used for the treatment of type 2 diabetes. Although it reduces hepatic glucose production, clinical studies show that metformin may reduce plasma dipeptidyl peptidase-4 activity and increase circulating levels of glucagon-like peptide 1 (GLP-1). We examined whether metformin exerts glucoregulatory actions via modulation of the incretin axis. Methods Metformin action was assessed in Glp1r
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) control glucose homeostasis through well-defined actions on the islet β cell via stimulation of insulin secretion and preservation and expansion of β cell mass. We examined the importance of endogenous incretin receptors for control of glucose homeostasis through analysis of Glp1r -/-, Gipr -/-, and double incretin receptor knockout (DIRKO) mice fed a high-fat (HF) diet. DIRKO mice failed to upregulate levels of plasma insulin, pancreatic insulin mRNA transcripts, and insulin content following several months of HF feeding. Both single incretin receptor knockout and DIRKO mice exhibited resistance to diet-induced obesity, preservation of insulin sensitivity, and increased energy expenditure associated with increased locomotor activity. Moreover, plasma levels of plasminogen activator inhibitor-1 and resistin failed to increase significantly in DIRKO mice after HF feeding, and the GIP receptor agonist [D-Ala 2 ]GIP, but not the GLP-1 receptor agonist exendin-4, increased the levels of plasma resistin in studies of both acute and chronic administration. These findings extend our understanding of how endogenous incretin circuits regulate glucose homeostasis independent of the β cell via control of adipokine secretion and energy expenditure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.