The outermost protective structure found in endospores of Bacillus subtilis is a thick protein shell known as the coat, which makes a key contribution to the resistance properties of the mature spore and also plays a role in its interaction with compounds able to trigger germination. The coat is organized as a lamellar inner layer and an electron-dense outer layer and has a complex polypeptide composition. Here we report the cloning and characterization of an operon, cotJ, located at about 62؇ on the B. subtilis genetic map, whose inactivation results in the production of spores with an altered pattern of coat polypeptides. The cotJ operon was identified by screening a random library of lacZ transcriptional fusions for a conditional (inducer-dependent) Lac . Studies with double-reporter strains bearing a cotJ-gusA fusion and lacZ fusions to other cot genes confirmed that expression of cotJ is initiated during sporulation prior to activation of genes known to encode coat structural proteins (with the sole exception of cotE). An in vitro-constructed insertion-deletion mutation in cotJ resulted in the formation of spores with no detectable morphological or resistance deficiency. However, examination of the profile of electrophoretically separated spore coat proteins from the null mutant revealed a pattern that was essentially identical to that of a wild-type strain in the range of 12 to 65 kDa, except for polypeptides of 17 and 24 kDa, the putative products of the second (cotJB) and third (cotJC) cistrons of the operon, that were missing or reduced in amount in the coat of the mutant. Polypeptides of the same apparent sizes are detected in spores of a cotE null mutant, on which basis we infer that the products of the cotJ operon are required for the normal formation of the inner layers of the coat or are themselves structural components of the coat. Because the onset of cotJ transcription is temporally coincident with the appearance of active E
We cloned and characterized a gene, cotM, that resides in the 173؇ region of the Bacillus subtilis chromosome and is involved in spore outer coat assembly. We found that expression of the cotM gene is induced during development under K control and is negatively regulated by the GerE transcription factor. Disruption of the cotM gene resulted in spores with an abnormal pattern of coat proteins. Electron microscopy revealed that the outer coat in cotM mutant spores had lost its multilayered type of organization, presenting a diffuse appearance. In particular, significant amounts of material were absent from the outer coat layers, which in some areas had a lamellar structure more typical of the inner coat. Occasionally, a pattern of closely spaced ridges protruding from its surface was observed. No deficiency associated with the inner coat or any other spore structure was found. CotM is related to the ␣-crystallin family of low-molecular-weight heat shock proteins, members of which can be substrates for transglutaminase-mediated protein cross-linking. CotM was not detected among the extractable spore coat proteins. These observations are consistent with a model according to which CotM is part of a cross-linked insoluble skeleton that surrounds the spore, serves as a matrix for the assembly of additional outer coat material, and confers structural stability to the final structure.
Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.
SummaryDuring Bacillus subtilis endospore formation, a complex protein coat is assembled around the maturing spore. The coat is made up of more than two dozen proteins that form an outer layer, which provides chemical resistance, and an inner layer, which may play a role in the activation of germination. A third, amorphous layer of the coat occupies the space between the inner coat and the cortex, and is referred to as the undercoat. Although several coat proteins have been characterized, little is known about their interactions during assembly of the coat. We show here that at least two open reading frames of the cotJ operon (cotJA and cotJC) encode spore coat proteins. We suggest that CotJC is a component of the undercoat, since we found that its assembly onto the forespore is not prevented by mutations that block both inner and outer coat assembly, and because CotJC is more accessible to antibody staining in spores lacking both of these coat layers. Assembly of CotJC into the coat is dependent upon expression of cotJA. Conversely, CotJA is not detected in the coats of a cotJC insertional mutant. Co-immunoprecipitation was used to demonstrate the formation of complexes containing CotJA and CotJC 6 h after the onset of sporulation. Experiments with the yeast two-hybrid system indicate that CotJC may interact with itself and with CotJA. We suggest that interaction of CotJA with CotJC is required for the assembly of both CotJA and CotJC into the spore coat.
The coat of spores is a multiprotein protective structure that also arbitrates many of the environmental interactions of the spore. The coat assembles around the cortex peptidoglycan layer and is differentiated into an inner and an outer layer and a crust. SafA governs assembly of the inner coat, whereas CotE drives outer coat assembly. SafA localizes to the cortex-coat interface. Both SafA and its short form C30 are substrates for Tgl, a coat-associated transglutaminase that cross-links proteins through ε-(γ-glutamyl)lysyl isopeptide bonds. We show that SafA and C30 are distributed between the coat and cortex layers. The deletion of increases the extractability of SafA, mainly from the cortex. Tgl itself is mostly located in the inner coat and cortex. The localization of Tgl-cyan fluorescent protein (Tgl-CFP) is strongly, but not exclusively, dependent on However, the association of Tgl with the cortex requires Together, our results suggest an assembly pathway in which Tgl is first recruited to the forming spore in a manner that is only partially dependent on SafA and then is drafted to the cortex by SafA. Tgl, in turn, promotes the conversion of coat- and cortex-associated SafA into forms that resist extraction, possibly by catalyzing the cross-linking of SafA to other coat proteins, to the cortex, and/or to cortex-associated proteins. Therefore, the final assembly state of SafA relies on an autoregulatory pathway that requires the subcellular localization of a protein cross-linking enzyme. Tgl most likely exerts a "spotwelding" activity, cross-linking preformed complexes in the cortex and inner coat layers of spores. In this work, we show how two proteins work together to determine their subcellular location within the coat of bacterial endospores. endospores are surrounded by a multilayer protein coat composed of over 80 proteins, which surrounds an underlying peptidoglycan layer (the spore cortex) protecting it from lytic enzymes. How specific coat proteins are targeted to specific layers of the coat is not well understood. We found that the protein SafA recruits a protein-cross-linking enzyme (a transglutaminase) to the cortex and inner layers of the coat, where both are cemented, by cross-linking, into macromolecular complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.