BackgroundPrognostic tools to predict early postoperative motor function recovery (MFR) after thoracolumbar intervertebral disk herniation (IVDH) in paraplegic dogs represent an opportunity to timely implement novel therapies that could shorten recovery times and diminish permanent neurological dysfunctions.HypothesisFractional anisotropy (FA) values obtained using diffusion tensor imaging have a higher prognostic value than a lesion extension ratio in T2‐weighted images (T2W‐LER) and clinical assessment of deep pain perception (DPP) for MFR.AnimalsThirty‐five paraplegic dogs with diagnosis of acute or subacute thoracolumbar IVDH.MethodsProspective, descriptive observational study. At admission, absence or presence of DPP, T2W‐LER, and FA values was evaluated. MFR was assessed within 4 weeks after decompressive surgery. Values of T2W‐LER and FA of dogs with and without MFR were compared using t‐tests. All 3 methods were evaluated for their sensitivity and specificity as a prognostic factor.ResultsNo differences were found between groups regarding T2W‐LER. FA values differed statistically when measured caudally of lesion epicenter being higher in dogs without MFR compared to dogs with MFR (P = .023). Logistic regression analysis revealed significance in FA values measured caudally of the lesion epicenter (P = .033, area under the curve = 0.72). Using a cutoff value of FA = 0.660, the technique had a sensitivity of 80% and a specificity of 55%. Evaluation of DPP had a sensitivity of 73.3% and specificity of 75% (P = .007).Conclusions and Clinical ImportanceEvaluation of DPP showed a similar sensitivity and a better specificity predicting early MFR than quantitative magnetic resonance imaging.
Background Retrospective research recently identified a possible relationship between duration of surgery and outcome in severely affected dogs treated surgically for acute thoracolumbar intervertebral disk herniation (TL‐IVDH). Hypothesis That increased duration of surgery is associated with poorer outcome in dogs with absent pain perception treated surgically for TL‐IVDH. Animals Two hundred ninety‐seven paraplegic dogs with absent pain perception surgically treated for acute TL‐IVDH. Methods Retrospective cohort study. Medical records of 5 institutions were reviewed. Inclusion criteria were paraplegia with absence of pain perception, surgical treatment of TL‐IVDH, and 1‐year postoperative outcome (ambulatory: yes or no). Canine data, outcome, and surgery and total anesthesia duration were retrieved. Results In this study, 183/297 (61.6%) dogs were ambulatory within 1 year, 114 (38.4%) dogs failed to recover, including 74 dogs (24.9%) euthanized because of progressive myelomalacia. Median anesthesia duration in dogs that regained ambulation within 1 year of surgery (4.0 hours, interquartile range [IQR] 3.2‐5.1) was significantly shorter than those that did not (4.5 hours, IQR 3.7‐5.6, P = .01). Multivariable logistic regression demonstrated a significant negative association between both duration of surgery and total anesthesia time and ambulation at 1 year when controlling for body weight and number of disk spaces operated on. Conclusions and Clinical Importance Findings support a negative association between increased duration of anesthesia and outcome in this group of dogs. However, the retrospective nature of the data does not imply a causal relationship.
Susceptibility-weighted imaging (SWI), an MRI sequence for the detection of hemorrhage, allows differentiation of paramagnetic and diamagnetic substances based on tissue magnetic susceptibility differences. The three aims of this retrospective study included a comparison of the number of areas of signal void (ASV) between SWI and T2*-weighted imaging (T2*WI), differentiation of hemorrhage and calcification, and investigation of image deterioration by artifacts. Two hundred twelve brain MRIs, 160 dogs and 52 cats, were included. The sequences were randomized and evaluated for presence/absence and numbers of ASV and extent of artifacts causing image deterioration by a single, blinded observer. In cases with a CT scan differentiation of paramagnetic (hemorrhagic) and diamagnetic (calcification) lesions was made, SWI was performed to test correct assignment using the Hounsfield Units. Non-parametric tests were performed to compare both sequences regarding detection of ASV and the effect of artifacts on image quality. The presence of ASV was found in 37 SWI sequences and 34 T2*WI sequences with a significant increase in ASV only in dogs >5 and ≤ 15 kg in SWI. The remaining weight categories showed no significance. CT examination was available in 11 cases in which 81 ASV were found. With the use of phase images, 77 were classified as paramagnetic and none as diamagnetic. A classification was not possible in four cases. At the level of the frontal sinus, significantly more severe artifacts occurred in cats and dogs (dogs, p < 0.001; cats, p = 0.001) in SWI. The frontal sinus artifact was significantly less severe in brachycephalic than non-brachycephalic dogs in both sequences (SWI, p < 0.001; T2*WI, p < 0.001). In conclusion, with the advantages of better detection of ASV in SWI compared with T2*WI and the opportunity to differentiate between paramagnetic and diamagnetic origin in most cases, SWI is generally recommended for dogs. Frontal sinus conformation appears to be a limiting factor in image interpretation.
Cerebral cortical laminar necrosis (CLN) is a consequence of severe hypoxic, ischemic, or hypoglycemic events. In humans, these cortical lesions show characteristic linear T1‐weighted (T1W) hyperintensity in the late subacute stage. Limited information reporting magnetic resonance imaging (MRI) findings in dogs affected by CLN is available. A 3‐year‐old Belgian Shepherd dog was referred 8 days after sudden onset of blindness after general anesthesia. Neurological examination showed central blindness and mild ataxia. Three‐Tesla MRI examination of the brain revealed bilateral asymmetrical areas of T2‐weighted hyperintensity within the occipital, parietal, temporal, and frontal cortex, involving gray and white matter. Furthermore, linear T1W‐hyperintense lesions were found in the cerebral cortex of the same areas and showed heterogeneous contrast enhancement. Perfusion‐weighted images revealed hyperperfusion in the affected regions. Lesions were compatible with subacute CLN with corresponding edema suspected to be secondary to anesthesia‐related brain hypoxia. Three‐Tesla MRI enabled identification of the laminar pattern of the cortical lesions.
Nerve root enlargement with increased contrast uptake has been reported in dogs and humans secondary to nerve root compression. In cats, nerve root enlargement and contrast uptake only have been reported in association with inflammatory and neoplastic diseases, but not as a sequela to nerve root compression. An 8-year-old oriental short hair cat was presented with acute neurologic deficits consistent with left-sided sciatic nerve deficit and possible L6-S1 myelopathy. Magnetic resonance imaging (MRI) was performed and identified compression of the cauda equina and L7 nerve root associated with intervertebral disc herniation (IVDH) at L6-L7 as well as widespread sciatic nerve enlargement with moderate rim enhancement. A hemilaminectomy was performed to evacuate herniated disc material. The nerve root was biopsied and submitted for histological evaluation. Interstitial nerve edema was diagnosed. Follow-up MRI 3 months postoperatively showed complete remission of the changes. Nerve root thickening together with contrast enhancement may represent nerve edema in cats secondary to IVDH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.