Introduction Articular cartilage is an avascular, alymphatic, and anisotropic tissue, these characteristics cause significant healing problems to injuries to the cartilage tissue. To overcome this problem, various techniques have been developed and widely used, but the cost-effectiveness and resulting tissue regeneration have never achieved hyaline-like cartilage that has the best biomechanical properties. The idea of this experiment is to use a Biodegradable Porous Sponge Cartilage (BPSC) Scaffold to enhance the regeneration of hyaline-like cartilage combined with microfracture technique and Adipose Derived Stem Cells (ASCs) or secretome on an animal model. Methods A model defect was made on the femoral trochlea of a New Zealand white rabbit. Four groups were made to compare different treatment methods for osteochondral defects. The groups were: (1) Control group; (2) Scaffold Group; (3) Scaffold + ASCs Group; (4) Scaffold + Secretome Group. After 12 weeks, we terminate the animal models, then a macroscopic evaluation using the International Cartilage Research Society (ICRS) scoring system and Oswestry Arthroscopy Score (OAS) was done, followed by sectioning the specimen for microscopic evaluation using the O’Driscoll scoring system. Results The mean score for all treatment group were better compared to the control group grossly and histologically. The best mean score for macroscopic and microscopic evaluation was the group given Scaffold + ASCs. Conclusion The application of BPSC scaffold enhances cartilage regeneration in larger osteochondral defects. Furthermore, the addition of ASCs or secretome along with the scaffold implantation further enhances the cartilage regeneration, in which ASCs shows better results.
Cell-based therapies such as Scaffold, stem cells, and secretome, are one of the alternatives to enhance the regeneration of hyaline-like cartilage in cases of cartilage defects. This study is an in-vivo experiment using animal models, in which we apply a composite of DFLP (Dwikora-Ferdiansyah-Lesmono-Purwati) Scaffold and Adipose-Derived Stem Cells (ASCs) or Secretome to an injury model on the distal femoral trochlea of New Zealand White Rabbits. The animals were divided into four groups: (1) control (K); (2) Scaffold only (S); (3) Scaffold + ASCs (SA); (4) Scaffold + Secretome (SS). Animals were terminated in the 12th week, and an immunohistochemistry (IHC) evaluation for Collagen type I and II were done. Statistical analysis shows that collagen type I IHC between groups shows no significant difference (p = 0.546). Collagen type II IHC shows significant difference between groups (p = 0,016). The findings in this study showed that Scaffold + ASCs group and Scaffold + Secretome have better collagen type II expression compared to the control group. DFLP Scaffold composite with ASCs or Secretome shows potential for cartilage regeneration therapy by increasing type II collagen expression as in hyaline-like cartilage which may be used for regenerative therapy for cartilage defects. Keywords : DFLP Scaffold; Adipose-Derived Stem Cells (ASCs); Secretome; Collagen Type I; Collagen Type IICorrespondence : ianperbowo@me.com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.