Human renal membrane transporters play key roles in the disposition of renally cleared drugs and endogenous substrates, but their ontogeny is largely unknown. Using 184 human postmortem frozen renal cortical tissues (preterm newborns to adults) and a subset of 62 tissue samples, we measured the mRNA levels of 11 renal transporters and the transcription factor pregnane X receptor (PXR) with quantitative real-time polymerase chain reaction, and protein abundance of nine transporters using liquid chromatography tandem mass spectrometry selective reaction monitoring, respectively. Expression levels of p-glycoprotein, urate transporter 1, organic anion transporter 1, organic anion transporter 3, and organic cation transporter 2 increased with age. Protein levels of multidrug and toxin extrusion transporter 2-K and breast cancer resistance protein showed no difference from newborns to adults, despite age-related changes in mRNA expression. Multidrug and toxin extrusion transporter 1, glucose transporter 2, multidrug resistance-associated protein 2, multidrug resistance-associated protein 4 (MRP4), and PXR expression levels were stable. Using immunohistochemistry, we found that MRP4 localization in pediatric samples was similar to that in adult samples. Collectively, our study revealed that renal drug transporters exhibited different rates and patterns of maturation, suggesting that renal handling of substrates may change with age.
Background Mucin Muc2 is the structural component of the intestinal mucus layer. Absence of Muc2 leads to loss of this layer allowing direct bacterial-epithelial interactions. We hypothesized that absence of the mucus layer leads to increased expression of innate defense peptides. Specifically, we aimed to study the consequence of Muc2 deficiency (Muc2 −/− ) on the expression of regenerating islet-derived protein 3 beta (Reg3β), regenerating islet-derived protein 3 gamma (Reg3γ), and angiogenin-4 (Ang4) in the intestine shortly before and after weaning. Methods Intestinal tissues of Muc2 −/− and wild-type (WT) mice were collected at postnatal day 14 (P14, i.e. pre-weaning) and P28 (i.e. post-weaning). Reg3β, Reg3γ, and Ang4 expression was studied by quantitative real-time PCR, Western-blot, in situ hybridization, and immunohistochemistry. Results Reg3β and Reg3γ were expressed by diverging epithelial cell types; namely enterocytes, Paneth cells, and goblet cells. Additionally, Ang4 expression was confined to Paneth cells and goblet cells. Expression of Reg3β , Reg3γ , and Ang4 differed between WT and Muc2 −/− mice before and after weaning. Interestingly, absence of Muc2 strongly increased Reg3β and Reg3γ expression in the small intestine and colon. Finally, morphological signs of colitis were only observed in the distal colon of Muc2 −/− mice at P28, where and when expression levels of Reg3β , Reg3γ , and Ang4 were the lowest. Conclusions Expression of Reg3 proteins and Ang4 by goblet cells point to an important role for goblet cells in innate defense. Absence of Muc2 results in up-regulation of Reg3β and Reg3γ expression, suggesting altered bacterial-epithelial signaling and an innate defense response in Muc2 −/− mice. The inverse correlation between colitis development and Reg3β , Reg3γ , and Ang4 expression levels might point toward a role for these innate defense peptides in regulating intestinal inflammation.
Paneth cell dysfunction has been suggested in necrotizing enterocolitis (NEC). The aim of this study was to i) study Paneth cell presence, protein expression, and developmental changes in preterm infants with NEC and ii) determine Paneth cell products and antimicrobial capacity in ileostomy outflow fluid. Intestinal tissue from NEC patients (n = 55), preterm control infants (n = 22), and term controls (n = 7) was obtained during surgical resection and at stoma closure after recovery. Paneth cell abundance and protein expression were analyzed by immunohistochemistry. RNA levels of Paneth cell proteins were determined by real-time quantitative RT-PCR. In ileostomy outflow fluid, Paneth cell products were quantified, and antimicrobial activity was measured in vitro. In acute NEC, Paneth cell abundance in small intestinal tissue was not significantly different from preterm controls. After recovery from NEC, Paneth cell hyperplasia was observed in the small intestine concomitant with elevated human alpha-defensin 5 mRNA levels. In the colon, metaplastic Paneth cells were observed. Ileostomy fluid contained Paneth cell proteins and inhibited bacterial growth. In conjunction, these data suggest an important role of Paneth cells and their products in various phases of NEC.
Threonine is an essential amino acid necessary for synthesis of intestinal (glyco)proteins such as mucin MUC2 to maintain adequate gut barrier function. In premature infants, reduced barrier function may contribute to the development of necrotizing enterocolitis (NEC). Human milk protects against NEC compared with infant formula. Therefore, we hypothesized that formula feeding decreases the MUC2 synthesis rate concomitant with a decrease in intestinal first-pass threonine utilization, predisposing the preterm neonate to NEC. Preterm pigs were delivered by caesarian section and received enteral feeding with formula (FORM; n = 13) or bovine colostrum (COL; n = 6) for 2 d following 48 h of total parenteral nutrition. Pigs received a dual stable isotope tracer infusion of threonine to determine intestinal threonine kinetics. NEC developed in 38% of the FORM pigs, whereas none of the COL pigs were affected (P = 0.13). Intestinal fractional first-pass threonine utilization was lower in FORM pigs (49 ± 2%) than in COL pigs (60 ± 4%) (P = 0.02). In FORM pigs compared with COL pigs, protein synthesis (369 ± 31 mg·kg(-1)·d(-1) vs. 615 ± 54 mg·kg(-1)·d(-1); P = 0.003) and MUC2 synthesis (121 ± 17%/d vs. 184 ± 15%/d; P = 0.02) were lower in the distal small intestine (SI). Our results suggest that formula feeding compared with colostrum feeding in preterm piglets reduces mucosal growth with a concomitant decrease in first-pass splanchnic threonine utilization, protein synthesis, and MUC2 synthesis in the distal SI. Hence, decreased intestinal threonine metabolism and subsequently impaired gut barrier function may predispose the formula-fed infant to developing NEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.