BANYAN Σ is a new Bayesian algorithm to identify members of young stellar associations within 150 pc of the Sun. It includes 27 young associations with ages in the range ∼1–800 Myr, modeled with multivariate Gaussians in six-dimensional (6D) XYZUVW space. It is the first such multi-association classification tool to include the nearest sub-groups of the Sco-Cen OB star-forming region, the IC 2602, IC 2391, Pleiades and Platais 8 clusters, and the ρ Ophiuchi, Corona Australis, and Taurus star formation regions. A model of field stars is built from a mixture of multivariate Gaussians based on the Besançon Galactic model. The algorithm can derive membership probabilities for objects with only sky coordinates and proper motion, but can also include parallax and radial velocity measurements, as well as spectrophotometric distance constraints from sequences in color–magnitude or spectral type–magnitude diagrams. BANYAN Σ benefits from an analytical solution to the Bayesian marginalization integrals over unknown radial velocities and distances that makes it more accurate and significantly faster than its predecessor BANYAN II. A contamination versus hit rate analysis is presented and demonstrates that BANYAN Σ achieves a better classification performance than other moving group tools available in the literature, especially in terms of cross-contamination between young associations. An updated list of bona fide members in the 27 young associations, augmented by the Gaia-DR1 release, as well as all parameters for the 6D multivariate Gaussian models for each association and the Galactic field neighborhood within 300 pc are presented. This new tool will make it possible to analyze large data sets such as the upcoming Gaia-DR2 to identify new young stars. IDL and Python versions of BANYAN Σ are made available with this publication, and a more limited online web tool is available at http://www.exoplanetes.umontreal.ca/banyan/banyansigma.php.
We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age-calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color–magnitude, luminosity, and effective temperature. We find that gravity classification and photometric color clearly separate 5–130 Myr sources from >3 Gyr field objects, but they do not correlate one to one with the narrower 5–130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1 and 4σ from the field sequences and the most extreme outlier switches between intermediate- and low-gravity sources either confirmed in a group or not. The absolute magnitudes of low-gravity sources from the J band through W3 show a flux redistribution when compared to equivalently typed field brown dwarfs that is correlated with spectral subtype. Low-gravity, late-type L dwarfs are fainter at J than the field sequence but brighter by W3. Low-gravity M dwarfs are >1 mag brighter than field dwarfs in all bands from J through W3. Clouds, which are a far more dominant opacity source for L dwarfs, are the likely cause. On color–magnitude diagrams, the latest-type, low-gravity L dwarfs drive the elbow of the L/T transition up to 1 mag redder and 1 mag fainter than field dwarfs at M J but are consistent with or brighter than the elbow at M W1 and M W2. We conclude that low-gravity dwarfs carry an extreme version of the cloud conditions of field objects to lower temperatures, which logically extends into the lowest-mass, directly imaged exoplanets. Furthermore, there is an indication on color-magnitude diagrams (CMDs; such as M J versus (J–W2)) of increasingly redder sequences separated by gravity classification, although it is not consistent across all CMD combinations. Examining bolometric luminosities for planets and low-gravity objects, we confirm that (in general) young M dwarfs are overluminous while young L dwarfs are normal compared to the field. Using model extracted radii, this translates into normal to slightly warmer M dwarf temperatures compared to the field sequence and lower temperatures for L dwarfs with no obvious correlation with the assigned moving group.
We present results of the largest, most comprehensive study ever done of the stellar multiplicity of the most common stars in the Galaxy, the red dwarfs. We have conducted an all-sky volume-limited survey for stellar companions to 1120 M dwarf primaries known to lie within 25 pc of the Sun via trigonometric parallaxes. In addition to a comprehensive literature search, stars were explored in new surveys for companions at separations of 2 ′′ to 300 ′′ . A reconnaissance of wide companions to separations of 300 ′′ was done via blinking archival images. I−band images were used to search our sample for companions at separations of 2 ′′ to 180 ′′ . Various astrometric and photometric methods were used to probe the inner 2 ′′ to reveal close companions. We report the discovery of 20 new companions and identify 56 candidate multiple systems.We find a stellar multiplicity rate of 26.8±1.4% and a stellar companion rate of 32.4±1.4% for M dwarfs. There is a broad peak in the separation distribution of the companions at 4 -20 AU, with a weak trend of smaller projected linear separations for lower mass primaries. A hint that M dwarf multiplicity may be a function of tangential velocity is found, with faster moving, presumably older, stars found to be multiple somewhat less often. We calculate that stellar companions make up at least 17% of mass attributed to M dwarfs in the solar neighborhood, with roughly 11% of M dwarf mass hidden as unresolved companions. Finally, when considering all M dwarf primaries and companions, we find that the mass distribution for M dwarfs increases to the end of the stellar main sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.