We studied the molecular basis of low hepatic lipase (HL) activity in normolipidemic male patients with angiographically documented coronary artery disease (CAD). In 18 subjects with a lowered HL activity (< 225 mU/mL), all nine exons of the HL gene and part of the promoter region (nucleotides -524 to +7) were sequenced. No structural mutations in the coding part of the HL gene were found, but 50% of the subjects showed a C-to-T substitution at nucleotide -480. Screening for the base substitution in 782 patients yielded an allele frequency of 0.213 (297 heterozygotes, 18 homozygotes). In a group of 316 nonsymptomatic control subjects, the allele frequency was 0.189, which is significantly less than in the CAD patients (P = .035). In the CAD patients, the C-to-T substitution was associated with a lowered lipase activity (heterozygotes -15%, homozygotes -20%). The patients were divided into quartiles on the basis of HL activity. Sixty percent (allele frequency 0.32) of the patients in the lowest quartile (HL activity < 306 mU/mL) had the gene variant against 27% (allele frequency 0.14) in the highest quartile (HL activity > 466 mU/mL). In the noncarriers, but not in the carriers, HL activity was related with plasma insulin, being increased at higher insulin concentration. Homozygous carriers had a significantly higher HDL cholesterol level-than noncarriers (1.13 +/- 0.28 mmol/L versus 0.92 +/- 0.22 mmol/L, P < .02). Our results show that a C-to-T substitution at -480 of the HL promoter is associated with a lowered HL activity. The base substitution, or a closely linked gene variation, may contribute to the variation in HL activity and affect plasma lipoprotein metabolism.
Objectives. Lipoprotein(a) [Lp(a)] is an independent risk factor for aortic valve stenosis and aortic valve calcification (AVC) in the general population. In this study, we determined the association between AVC and both plasma Lp(a) levels and apolipoprotein(a) [apo(a)] kringle IV repeat polymorphisms in asymptomatic statin-treated patients with heterozygous familial hypercholesterolaemia (FH).Methods. A total of 129 asymptomatic heterozygous FH patients (age 40-69 years) were included in this study. AVC was detected using computed tomography scanning. Lp(a) concentration and apo(a) kringle IV repeat number were measured using immunoturbidimetry and immunoblotting, respectively. Univariate and multivariate logistic regression were used to assess the association between Lp(a) concentration and the presence of AVC.Results. Aortic valve calcification was present in 38.2% of patients, including three with extensive AVC (>400 Agatston units). Lp(a) concentration was significantly correlated with gender, number of apo(a) kringle IV repeats and the presence and severity of AVC, but not with coronary artery calcification (CAC). AVC was significantly associated with plasma Lp(a) level, age, body mass index, blood pressure, duration of statin use, cholesterolyear score and CAC score. After adjustment for all significant covariables, plasma Lp(a) concentration remained a significant predictor of AVC, with an odds ratio per 10-mg dL À1 increase in Lp(a) concentration of 1.11 (95% confidence interval 1.01-1.20, P = 0.03).Conclusion. In asymptomatic statin-treated FH patients, plasma Lp(a) concentration is an independent risk indicator for AVC.
The involvement of metabolic energy in platelet responses was investigated by measuring the energy consumption during aggregation and secretion from dense, alpha- and acid-hydrolase-containing granules. Gel-filtered human platelets were stimulated with different amounts of thrombin (0.05-5.0 units X ml-1). At various stages during aggregation and secretion the energy consumption was measured from the changes in metabolic ATP and ADP following abrupt arrest of ATP resynthesis. Stimulation with 5 units of thrombin X ml-1 increased the energy consumption from 6.2 +/- 0.9 to 17.8 +/- 0.4 mumol of ATPeq. X min-1 X (10(11) platelets)-1 during the first 15 s. It decreased thereafter and returned to values found in resting cells after about 30 s. With 0.05 unit of thrombin X ml-1, the energy consumption accelerated more slowly and took at least 3 min before it normalized. A strong positive correlation was found between the velocities of the three secretion responses and the concurrent energy consumption (a) at different stages of the responses induced by a given dose of thrombin, and (b) at different secretion velocities initiated by different amounts of thrombin. When, at different stages of the responses, the extent of secretion was compared with the amount of energy that had been consumed, a strong linear correlation was found with the increment in energy consumption but not with the total energy consumption. This correlation was independent of the concentration of thrombin and indicated that complete secretion from dense, alpha- and acid-hydrolase-containing granules was paralleled by an increment of 4.0, 6.5 and 6.7 mumol of ATPeq. X (10(11) platelets)-1, respectively. An energy cost of 0.7 mumol of ATPeq. X (10(11) platelets)-1 was calculated for separate dense-granule secretion, whereas the combined alpha- and acid-hydrolase granule secretion required 5.3 mumol of ATPeq. X (10(11) platelets)-1. There was no correlation between energy consumption and optical aggregation. In contrast, the rate of single platelet disappearance, which is a measure for the early formation of small aggregates, correlated closely with the rate of energy consumption. Compared with secretion, however, the energy requirement of single platelet disappearance was minor, since 2mM-EDTA completely prevented this response but decreased the energy consumption only slightly. An increase of 0.5-1.0 mumol of ATPeq. X (10(11) platelets)-1 was seen before single platelet disappearance and the three secretion responses were initiated, indicating an increase in energy consuming processes that preceded these responses.(ABSTRACT TRUNCATED AT 400 WORDS)
We performed a proteomic investigation on primary cultures of neonatal rat cardiomyocytes after treatment with 10 nM endothelin-1 (ET1) for 48 h, an in vitro model for cardiac hypertrophy. Two-dimensional gel electrophoresis profiles of cell lysates were compared after colloidal Coomassie Blue staining. 12 protein spots that significantly changed in density due to ET1 stimulation were selected for in-gel digestion and identified through mass spectrometry. Of these, 8 spots were increased and 4 were decreased. Four of the increased proteins were identified as desmin, the cardiac component of intermediate filaments and one as alpha-B-crystallin, a molecular chaperone that binds desmin. All the desmins increased 2- to 5-fold, and alpha-B-crystallin increased 2-fold after ET1 treatment. Desmin cytoskeleton has been implicated in the regulation of mitochondrial activity and distribution, as well as in the formation of amyloid bodies. Mitochondria-specific fluorescent probe MitoTracker indicated mitochondrial redistribution in hypertrophic cells. An increase of amyloid aggregates containing desmin upon treatment with ET1 was detected by filter assay. Of the four proteins that showed decreased abundance after ET1 treatment, the chaperones hsp60 and grp75 were decreased 13- and 9-fold, respectively. In conclusion, proteomic profiling of ET1-stimulated rat neonatal cardiomyocytes reveals specific changes in cardiac molecular phenotype mainly involving intermediate filament and molecular chaperone proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.