The increasing world-wide rate of antibiotic resistance as well as the capacity of microorganisms to form biofilms, have led to a higher incidence of mortal infections that require alternative methods for their control. Antimicrobial photodynamic therapy (aPDT) emerged as an effective solution against resistant strains. The present work aims to evaluate the aPDT efficiency of a photosensitizer (PS) based on a low-cost formulation constituted by five cationic porphyrins (FORM) and its potentiation effect by KI on a broad spectrum of microorganisms under white light (380–700 nm, 25 W/m[Formula: see text]. The aPDT assays were performed with different concentrations of FORM (0.1 to 5.0 [Formula: see text]M) and 100 mM of KI on planktonic and biofilm forms of gram-positive (methicillin resistant Staphylococcus aureus–MRSA) and gram-negative (Escherichia coli resistant to chloramphenicol and ampicillin) bacteria, of the fungi Candida albicans and on a T4-like bacteriophage as a mammalian virus model. The results indicate that the FORM alone is an efficient PS to photoinactivate not only gram-negative and gram-positive bacteria, but also C. albicans, in planktonic and biofilm forms, and T4-like phage at low concentrations (<5.0 [Formula: see text]M). The presence of KI enhanced the photodynamic effect of this FORM for all microorganisms on the planktonic form, allowing the reduction of PS concentration and treatment time. The results also show that the combination FORM/KI is highly efficient in the elimination of already well-established biofilms of E. coli,S. aureus and C. albicans. This effect is probably associated with longer-lived iodine reactive species produced during the aPDT treatment.
Summary
The present study evaluated the effects of carvacrol and thymol against Salmonella spp. biofilm on polypropylene. The efficacy of the compounds was assessed by quantifying Salmonella spp. cells during and after biofilm formation on polypropylene and performing scanning electron microscopy. During biofilm formation, carvacrol and thymol, at subinhibitory concentrations, reduced bacterial counts about 1–2 log, while established Salmonella spp. biofilms were reduced about 1–5 log by carvacrol and thymol, at MIC or 2× MIC. The greatest reduction in carvacrol‐treated biofilms, about 5 log, was observed with 156 and 312 μg mL−1 (MIC and 2× MIC) in established Salmonella Typhimurium ATCC 14028 biofilms. Thymol showed the greatest reduction, about 4 log, at 624 μg mL−1 (2× MIC) against mature Salmonella Enteritidis biofilm. Carvacrol and thymol reduced the number of Salmonella spp. cells on polypropylene, suggesting their potential for the control of Salmonella spp. biofilms.
This study evaluated the rose bengal‐ and erythrosine‐mediated photoinactivation against Salmonella Typhimurium and Staphylococcus aureus planktonic and sessile cells using green LED as a light source. The free‐living or 2‐day‐old biofilm cells were treated with different concentrations of the photosensitizing agents and subjected to irradiation. Only 5 min photosensitization with rose bengal at 25 nmol L−1 and 75 μmol L−1 completely eliminated S. aureus and S. Typhimurium planktonic cells, respectively. Erythrosine at 500 nmol L−1 and 5 min of light exposure also reduced S. aureus planktonic cells to undetectable levels. Eradication of S. aureus biofilms was achieved when 500 μmol L−1 of erythrosine or 250 μmol L−1 of rose bengal was combined with 30 min of irradiation. Scanning electron microscopy allowed the observation of morphological changes in planktonic cells and disruption of the biofilm architecture after photodynamic treatment. The overall data demonstrate that rose bengal and erythrosine activated by green LED may be a targeted strategy for controlling foodborne pathogens in both planktonic and sessile states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.