BackgroundSaturated fatty acids can be detrimental to human health and have received considerable attention in recent years. Several studies using taurine breeds showed the existence of genetic variability and thus the possibility of genetic improvement of the fatty acid profile in beef. This study identified the regions of the genome associated with saturated, mono- and polyunsaturated fatty acids, and n-6 to n-3 ratios in the Longissimus thoracis of Nellore finished in feedlot, using the single-step method.ResultsThe results showed that 115 windows explain more than 1 % of the additive genetic variance for the 22 studied fatty acids. Thirty-one genomic regions that explain more than 1 % of the additive genetic variance were observed for total saturated fatty acids, C12:0, C14:0, C16:0 and C18:0. Nineteen genomic regions, distributed in sixteen different chromosomes accounted for more than 1 % of the additive genetic variance for the monounsaturated fatty acids, such as the sum of monounsaturated fatty acids, C14:1 cis-9, C18:1 trans-11, C18:1 cis-9, and C18:1 trans-9. Forty genomic regions explained more than 1 % of the additive variance for the polyunsaturated fatty acids group, which are related to the total polyunsaturated fatty acids, C20:4 n-6, C18:2 cis-9 cis12 n-6, C18:3 n-3, C18:3 n-6, C22:6 n-3 and C20:3 n-6 cis-8 cis-11 cis-14. Twenty-one genomic regions accounted for more than 1 % of the genetic variance for the group of omega-3, omega-6 and the n-6:n-3 ratio.ConclusionsThe identification of such regions and the respective candidate genes, such as ELOVL5, ESSRG, PCYT1A and genes of the ABC group (ABC5, ABC6 and ABC10), should contribute to form a genetic basis of the fatty acid profile of Nellore (Bos indicus) beef, contributing to better selection of the traits associated with improving human health.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2511-y) contains supplementary material, which is available to authorized users.
BackgroundFatty acid type in beef can be detrimental to human health and has received considerable attention in recent years. The aim of this study was to identify differentially expressed genes in longissimus thoracis muscle of 48 Nellore young bulls with extreme phenotypes for fatty acid composition of intramuscular fat by RNA-seq technique.ResultsDifferential expression analyses between animals with extreme phenotype for fatty acid composition showed a total of 13 differentially expressed genes for myristic (C14:0), 35 for palmitic (C16:0), 187 for stearic (C18:0), 371 for oleic (C18:1, cis-9), 24 for conjugated linoleic (C18:2 cis-9, trans11, CLA), 89 for linoleic (C18:2 cis-9,12 n6), and 110 genes for α-linolenic (C18:3 n3) fatty acids. For the respective sums of the individual fatty acids, 51 differentially expressed genes for saturated fatty acids (SFA), 336 for monounsaturated (MUFA), 131 for polyunsaturated (PUFA), 92 for PUFA/SFA ratio, 55 for ω3, 627 for ω6, and 22 for ω6/ω3 ratio were identified. Functional annotation analyses identified several genes associated with fatty acid metabolism, such as those involved in intra and extra-cellular transport of fatty acid synthesis precursors in intramuscular fat of longissimus thoracis muscle. Some of them must be highlighted, such as: ACSM3 and ACSS1 genes, which work as a precursor in fatty acid synthesis; DGAT2 gene that acts in the deposition of saturated fat in the adipose tissue; GPP and LPL genes that support the synthesis of insulin, stimulating both the glucose synthesis and the amino acids entry into the cells; and the BDH1 gene, which is responsible for the synthesis and degradation of ketone bodies used in the synthesis of ATP.ConclusionSeveral genes related to lipid metabolism and fatty acid composition were identified. These findings must contribute to the elucidation of the genetic basis to improve Nellore meat quality traits, with emphasis on human health. Additionally, it can also contribute to improve the knowledge of fatty acid biosynthesis and the selection of animals with better nutritional quality.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3232-y) contains supplementary material, which is available to authorized users.
The objective of this study was to estimate the genetic-quantitative relationships between the beef fatty acid profile with the carcass and meat traits of Nellore cattle. A total of 1826 bulls finished in feedlot conditions and slaughtered at 24 months of age on average were used. The following carcass and meat traits were analysed: subcutaneous fat thickness (BF), shear force (SF) and total intramuscular fat (IMF). The fatty acid (FA) profile of the Longissimus thoracis samples was determined. Twenty-five FAs (18 individuals and seven groups of FAs) were selected due to their importance for human health. The animals were genotyped with the BovineHD BeadChip and, after quality control for single nucleotide polymorphisms (SNPs), only 470,007 SNPs from 1556 samples remained. The model included the random genetic additive direct effect, the fixed effect of the contemporary group and the animal's slaughter age as a covariable. The (co)variances and genetic parameters were estimated using the REML method, considering an animal model (single-step GBLUP). A total of 25 multi-trait analyses, with four traits, were performed considering SF, BF and IMF plus each individual FA. The heritability estimates for individual saturated fatty acids (SFA) varied from 0.06 to 0.65, for monounsaturated fatty acids (MUFA) it varied from 0.02 to 0.14 and for polyunsaturated fatty acids (PUFA) it ranged from 0.05 to 0.68. The heritability estimates for Omega 3, Omega 6, SFA, MUFA and PUFA sum were low to moderate, varying from 0.09 to 0.20. The carcass and meat traits, SF (0.06) and IMF (0.07), had low heritability estimates, while BF (0.17) was moderate. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with BF were 0.04, 0.64 and -0.41, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with SF were 0.29, -0.06 and -0.04, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with IMF were 0.24, 0.90 and -0.67, respectively. The selection to improve meat tenderness in Nellore cattle should not change the fatty acid composition in beef, so it is possible to improve this attribute without affecting the nutritional beef quality in zebu breeds. However, selection for increased deposition of subcutaneous fat thickness and especially the percentage of intramuscular fat should lead to changes in the fat composition, highlighting a genetic antagonism between meat nutritional value and acceptability by the consumer.
| INTRODUC TI ONThe demand for animal products is increasing as the world population grows. Brazil is an important beef producer and global exporter so it is important to invest in breeding programs aiming at traits that can meet the increasing demand for beef and the requirements of a demanding consumer (Carvalho et al., 2016). Also, beef cattle producers need to invest in technologies to increase profitability and improve the quality of the production. Therefore, the beef industry needs to reward the producer by implementing certification programs to stimulate the producers to adopt practices that improve meat quality, such as castrating males, crossbreeding, feedlot finishing, and slaughtering of heifers with adequate subcutaneous and intramuscular fat deposition. In the last decades, Brazilian beef producers have been using increasingly precocious cattle, with greater carcass development to produce beef with desirable traits. In short, Brazilian producers utilize crossbreeding between B. indicus and Taurus breeds to improve lean yield and beef quality (Carvalho et al., 2016;Gama et al., 2013;Pereira et al., 2015).Carcass and beef quality are significantly affected by gender (Gagaoua et al., 2015;Weglarz, 2010). Steer and heifer have lower performance, higher subcutaneous and intramuscular fat content, and better quality beef compared to bull carcasses (Seideman, AbstractThe study evaluated the effect of gender status on carcass and meat quality of feedlot Angus × Nellore cattle. A total of 176 cattle, 20 months old, were confined for 190-days and assigned to four treatments: bulls, immunocastrated, steers, and heifers. Bulls had greater rib eye area and HCW (p = 0.0001). Heifers had increased fat thickness (p = 0.0001). Steers and heifers had higher marbling scores (p = 0.0001).There was interaction between gender and aging time for Warner-Bratzler Shear Force (p = 0.0002), L* (p = 0.0118), and b* (p = 0.0113) values of beef. The sensory panel results showed that beef from bulls had the lowest consumer overall acceptance (p = 0.0278). Especially, regardless tenderness, steers and immunocastrated beef were considered tender, independent of aging time. Beef produced by heifers, steers, and immunocastrated is considered to be of higher quality than bulls. Thus, it is may be an interesting alternative to produce high-quality beef than bulls, to attend the consumer demand for high-quality products. Additionally, the low fatty acids n6 levels and low n6:n3 ratio, high levels of CLA, MUFAs, and oleic acid suggests that the heifer meat is favorable for human health.
The objective of this study was to compare SNP-BLUP, BayesCπ, BayesC and Bayesian Lasso methodologies to predict the direct genomic value for saturated, monounsaturated, and polyunsaturated fatty acid profile, omega 3 and 6 in the Longissimus thoracis muscle of Nellore cattle finished in feedlot. A total of 963 Nellore bulls with phenotype for fatty acid profiles, were genotyped using the Illumina BovineHD BeadChip (Illumina, San Diego, CA) with 777,962 SNP. The predictive ability was evaluated using cross validation. To compare the methodologies, the correlation between DGV and pseudo-phenotypes was calculated. The accuracy varied from -0.40 to 0.62. Our results indicate that none of the methods excelled in terms of accuracy, however, the SNP-BLUP method allows obtaining less biased genomic evaluations, thereby; this method is more feasible when taking into account the analyses' operating cost. Despite the lowest bias observed for EBV, the adjusted phenotype is the preferred pseudophenotype considering the genomic prediction accuracies regarding the context of the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.