We report on tests with a mind typing paradigm based on a P300 brain-computer interface (BCI) on a group of amyotrophic lateral sclerosis (ALS), middle cerebral artery (MCA) stroke, and subarachnoid hemorrhage (SAH) patients, suffering from motor and speech disabilities. We investigate the achieved typing accuracy given the individual patient's disorder, and how it correlates with the type of classifier used. We considered 7 types of classifiers, linear as well as nonlinear ones, and found that, overall, one type of linear classifier yielded a higher classification accuracy. In addition to the selection of the classifier, we also suggest and discuss a number of recommendations to be considered when building a P300-based typing system for disabled subjects.
ObjectivesWe study the applicability of a visual P3-based and a Steady State Visually Evoked Potentials (SSVEP)-based Brain-Computer Interfaces (BCIs) for mental text spelling on a cohort of patients with incomplete Locked-In Syndrome (LIS).MethodsSeven patients performed repeated sessions with each BCI. We assessed BCI performance, mental workload and overall satisfaction for both systems. We also investigated the effect of the quality of life and level of motor impairment on the performance.ResultsAll seven patients were able to achieve an accuracy of 70% or more with the SSVEP-based BCI, compared to 3 patients with the P3-based BCI, showing a better performance with the SSVEP BCI than with the P3 BCI in the studied cohort. Moreover, the better performance of the SSVEP-based BCI was accompanied by a lower mental workload and a higher overall satisfaction. No relationship was found between BCI performance and level of motor impairment or quality of life.ConclusionOur results show a better usability of the SSVEP-based BCI than the P3-based one for the sessions performed by the tested population of locked-in patients with respect to all the criteria considered. The study shows the advantage of developing alternative BCIs with respect to the traditional matrix-based P3 speller using different designs and signal modalities such as SSVEPs to build a faster, more accurate, less mentally demanding and more satisfying BCI by testing both types of BCIs on a convenience sample of LIS patients.
The work presented here shows how to overcome some of the limitations of screen-based visual stimulation. The superiority of the proposed decoding approach demonstrates the importance of preserving the circularity of the data during the decoding stage.
ObjectiveWe study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI.ApproachWe analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline.Main ResultsDespite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.