A novel, mesophilic, strictly anaerobic, sulfate-reducing and propionate-oxidizing bacterium, strain Prop6T, was enriched and isolated from a municipal anaerobic sewage sludge digester. Cells were Gram-stain-negative, catalase-positive, oval rods, motile by means of amphitrichous flagella, non-spore-forming and contained menaquinone MK-5(H2) as the major respiratory quinone. The genomic DNA G+C content was 51.7 mol%. The optimal NaCl concentration, temperature and pH were 2-5 g l-1, 35 °C and pH 7.6, respectively. Strain Prop6T could only oxidize propionate, lactate and pyruvate (weakly) with sulfate, sulfite or thiosulfate, mainly to acetate. Strain Prop6T fermented pyruvate and lactate to acetate and propionate. The predominant cellular fatty acids were C14 : 0, C16 : 0, C16 : 1ω7, C16 : 1ω5, C17 : 1ω6 and C18 : 1ω7. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the newly isolated strain was a member of the genus Desulfobulbus, with Desulfobulbus elongatus DSM 2908T, Desulfobulbus propionicus DSM 2032T and Desulfobulbus rhabdoformis DSM 8777T as closest relatives among species with validly published names. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, it is proposed that the isolate represents a novel species, Desulfobulbus oligotrophicus sp. nov. The type strain is Prop6T (=DSM 103420T=JCM 31535T).
Segmental vitiligo (SV) is a subtype of vitiligo characterized by a progressive and unilateral cutaneous depigmentation due to a melanocyte loss from both epidermis and hair follicle reservoirs (Ezzedine, Diallo, et al., 2012;Ezzedine, Lim, et al., 2012). About 10% of vitiligo cases are segmental (SV). In these cases, after an initial rapid spreading, the affected area of the skin does not expand with time. Until now, the exact pathophysiology of SV remained unclear. Histological and immunological studies were sparse and mainly focused on the absence of melanocytes and the analysis of lymphocytic infiltration in early evolving SV and mixed vitiligo (Attili
Climate change is one of the biggest threats that human society currently needs to face. Heat waves associated with global warming negatively affect plant growth and development and will increase in frequency. Tomato is one of the most produced and consumed fruit in the world but remarkable yield losses occur every year due to the sensitivity of many cultivars to heat stress. New insights into how tomato plants are responding to heat waves will contribute to the development of new cultivars with high yields under harsh temperature conditions. In this study, the analysis of microsporogenesis and pollen germination rate of eleven tomato cultivars after exposure to a simulated heat wave revealed differences between genotypes. The transcriptome of floral buds at two developmental stages of five cultivars selected based on their pollen germination tolerance or sensitivity, revealed common and specific molecular responses implemented by tomato cultivars to cope with heat waves. These data provide valuable insights into the underlying molecular adaptation of floral buds to heat stress and will contribute to the development of future climate resilient tomato varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.