BackgroundSynovial Sarcomas (SS) are rare tumors occurring predominantly in adolescent and young adults with a dismal prognosis in advanced phases. We report a first-in-human phase I of monoclonal antibody (OTSA-101) targeting FZD10, overexpressed in most SS but not present in normal tissues, labelled with radioisotopes and used as a molecular vehicle to specifically deliver radiation to FZD10 expressing SS lesions.MethodsPatients with progressive advanced SS were included. In the first step of this trial, OTSA-101 in vivo bio-distribution and lesions uptake were evaluated by repeated whole body planar and SPECT-CT scintigraphies from H1 till H144 after IV injection of 187 MBq of 111In-OTSA-101. A 2D dosimetry study also evaluated the liver absorbed dose when using 90Y-OTSA-101. In the second step, those patients with significant tumor uptake were randomized between 370 MBq (Arm A) and 1110 MBq (Arm B) of 90Y-OTSA-101 for radionuclide therapy.ResultsFrom January 2012 to June 2015, 20 pts. (median age 43 years [21–67]) with advanced SS were enrolled. Even though 111In-OTSA-101 liver uptake appeared to be intense, estimated absorbed liver dose was less than 20 Gy for each patient. Tracer intensity was greater than mediastinum in 10 patients consistent with sufficient tumor uptake to proceed to treatment with 90Y-OTSA-101: 8 were randomized (Arm A: 3 patients and Arm B: 5 patients) and 2 were not randomized due to worsening PS. The most common Grade ≥ 3 AEs were reversible hematological disorders, which were more frequent in Arm B. No objective response was observed. Best response was stable disease in 3/8 patients lasting up to 21 weeks for 1 patient.ConclusionsRadioimmunotherapy targeting FZD10 is feasible in SS patients as all patients presented at least one lesion with 111In-OTSA-101 uptake. Tumor uptake was heterogeneous but sufficient to select 50% of pts. for 90Y-OTSA-101 treatment. The recommended activity for further clinical investigations is 1110 MBq of 90Y-OTSA-101. However, because of hematological toxicity, less energetic particle emitter radioisopotes such as Lutetium 177 may be a better option to wider the therapeutic index.Trial registrationThe study was registered on the NCT01469975 website with a registration code NCT01469975 on November the third, 2011.
Purpose: Estimating the biodistribution and the pharmacokinetics from time-sequence SPECT images on a per-voxel basis is useful for studying activity nonuniformity or computing absorbed dose distributions by convolution of voxel kernels or Monte-Carlo radiation transport. Current approaches are either region-based, thus assuming uniform activity within the region, or voxel-based but using the same fitting model for all voxels. Methods: We propose a voxel-based multimodel fitting method (VoMM) that estimates a fitting function for each voxel by automatically selecting the most appropriate model among a predetermined set with Akaike criteria. This approach can be used to compute the time integrated activity (TIA) for all voxels in the image. To control fitting optimization that may fail due to excessive image noise, an approximated version based on trapezoid integration, named restricted method, is also studied. From this comparison, the number of failed fittings within images was estimated and analyzed. Numerical experiments were used to quantify uncertainties and feasibility was demonstrated with real patient data. Results: Regarding numerical experiments, root mean square errors of TIA obtained with VoMM were similar to those obtained with bi-exponential fitting functions, and were lower (< 5% vs. > 10%) than with single model approaches that consider the same fitting function for all voxels. Failure rates were lower with VoMM and restricted approaches than with single-model methods. On real clinical data, VoMM was able to fit 90% of the voxels and led to less failed fits than single-model approaches. On regions of interest (ROI) analysis, the difference between ROI-based and voxel-based TIA estimations was low, less than 4%. However, the computation of the mean residence time exhibited larger differences, up to 25%. Conclusions: The proposed voxel-based multimodel fitting method, VoMM, is feasible on patient data. VoMM leads organ-based TIA estimations similar to conventional ROI-based method. However, for pharmacokinetics analysis, studies of spatial heterogeneity or voxel-based absorbed dose assessment, VoMM could be used preferentially as it prevents model overfitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.