Abstract. Stream temperature and discharge are key hydrological variables for ecosystem and water resource management and are particularly sensitive to climate warming. Despite the wealth of meteorological and hydrological data, few studies have quantified observed stream temperature trends in the Alps. This study presents a detailed analysis of stream temperature and discharge in 52 catchments in Switzerland, a country covering a wide range of alpine and lowland hydrological regimes. The influence of discharge, precipitation, air temperature, and upstream lakes on stream temperatures and their temporal trends is analysed from multi-decadal to seasonal timescales. Stream temperature has significantly increased over the past 5 decades, with positive trends for all four seasons. The mean trends for the last 20 years are +0.37±0.11 ∘C per decade for water temperature, resulting from the joint effects of trends in air temperature (+0.39±0.14 ∘C per decade), discharge (-10.1±4.6 % per decade), and precipitation (-9.3±3.4 % per decade). For a longer time period (1979–2018), the trends are +0.33±0.03 ∘C per decade for water temperature, +0.46±0.03°C per decade for air temperature, -3.0±0.5 % per decade for discharge, and -1.3±0.5 % per decade for precipitation. Furthermore, we show that snow and glacier melt compensates for air temperature warming trends in a transient way in alpine streams. Lakes, on the contrary, have a strengthening effect on downstream water temperature trends at all elevations. Moreover, the identified stream temperature trends are shown to have critical impacts on ecological and economical temperature thresholds (the spread of fish diseases and the usage of water for industrial cooling), especially in lowland rivers, suggesting that these waterways are becoming more vulnerable to the increasing air temperature forcing. Resilient alpine rivers are expected to become more vulnerable to warming in the near future due to the expected reductions in snow- and glacier-melt inputs. A detailed mathematical framework along with the necessary source code are provided with this paper.
Abstract. Even though human-induced eutrophication has severely impacted temperate lake ecosystems over the last centuries, the effects on total organic carbon (TOC) burial and mineralization are not well understood. We study these effects based on sedimentary records from the last 180 years in five Swiss lakes that differ in trophic state. We compare changes in TOC content and modeled TOC accumulation rates through time to historical data on algae blooms, water column anoxia, wastewater treatment, artificial lake ventilation, and water column phosphorus (P) concentrations. We furthermore investigate the effects of eutrophication on rates of microbial TOC mineralization and vertical distributions of microbial respiration reactions in sediments. Our results indicate that the history of eutrophication is well recorded in the sedimentary record. Overall, eutrophic lakes have higher TOC burial and accumulation rates, and subsurface peaks in TOC coincide with past periods of elevated P concentrations in lake water. Sediments of eutrophic lakes, moreover, have higher rates of total respiration and higher contributions of methanogenesis to total respiration. However, we found strong overlaps in the distributions of respiration reactions involving different electron acceptors in all lakes regardless of lake trophic state. Moreover, even though water column P concentrations have been reduced by ∼ 50 %–90 % since the period of peak eutrophication in the 1970s, TOC burial and accumulation rates have only decreased significantly, by ∼ 20 % and 25 %, in two of the five lakes. Hereby there is no clear relationship between the magnitude of the P concentration decrease and the change in TOC burial and accumulation rate. Instead, data from one eutrophic lake suggest that artificial ventilation, which has been used to prevent water column anoxia in this lake for 35 years, may help sustain high rates of TOC burial and accumulation in sediments despite water column P concentrations being strongly reduced. Our study provides novel insights into the influence of human activities in lakes and lake watersheds on lake sediments as carbon sinks and habitats for diverse microbial respiration processes.
The recent negotiations on climate change in Paris have left partly open the discussion on a long-term global goal, in the form of an upper limit to warming. Agreement on such a limit is a political decision that need to be informed by scientific knowledge through a mapping that systematically explores the consequences of different policy choices. Such a multi-disciplinary effort, based on the analysis of a set of scenarios, helped structure the IPCC AR5 Synthesis Report. This Perspective summarizes this approach and its results, reviews its strengths and limitations, and discusses how decision-makers can use these results in practice. It also identifies research needs to facilitate integrated analysis of the climate change problem and to help better inform policy-makers and the public.
Many physically-based models for climate change impact studies require subdaily temporal resolution of the forcing data to provide meaningful predictions. However, climate scenarios are typically available at daily time step, severely limiting the application of such physically-based models. In this study, we propose an enhanced delta-change method for downscaling climate change scenarios from daily to hourly resolution. The approach presented provides objective criteria for assessing the quality of the determined delta and downscaled time series, while also fixing issues of common quantile mapping methods used for spatial downscaling related to the decrease of correlation between different variables. However, this new approach has limitations in correctly representing statistically extreme events and changes in the frequency of discontinuous events such as precipitation. Smoothing of historical and future data is required prior to applying the delta-change method, and the related parameters are found to have a subtle impact on the correctness of the representation of the seasonal means as well as the resulting (artificial) variability in the scenario data product. This new method is universal and can be applied with smoothing approaches apart from the harmonic fitting used in this work and in the past. In this study, the assessment suggested the use of seven harmonics for the smoothing of the input data as a best choice of this parameter for the data used. The method is applied to a Swiss climate change scenario data set, CH2018, and to a complement of this set to a Swiss alpine measurement network obtained by spatial transfer of CH2018, resulting in a set of 68 climate change scenarios at hourly resolution for 188 stations over Switzerland significantly expanding upon the spatial and temporal resolution of the CH2018 data set. All source code to perform such an analysis and the complete data product are provided open access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.