Let F ∈ K[X, Y ] be a polynomial of total degree D defined over a perfect field K of characteristic zero or greater than D. Assuming F separable with respect to Y , we provide an algorithm that computes all singular parts of Puiseux series of F above X = 0 in an expected O (D δ) operations in K, where δ is the valuation of the resultant of F and its partial derivative with respect to Y . To this aim, we use a divide and conquer strategy and replace univariate factorisation by dynamic evaluation. As a first main corollary, we compute the irreducible factors of F in K[[X]][Y ] up to an arbitrary precision X N with O (D(δ + N )) arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by F with O (D 3 ) arithmetic operations and, if K = Q, with O ((h + 1)D 3 ) bit operations using probabilistic algorithms, where h is the logarithmic height of F .Résumé. -Soit F ∈ K[X, Y ] un polynôme de degré total D défini au dessus d'un corps parfait K de caractéristique zéro ou plus grande que D. Sous l'hypothèse que F est séparable par rapport à la variable Y , nous décrivons un algorithme qui calcule l'ensemble des parties singulières des séries de Puiseux de F au-dessus de X = 0 avec un nombre moyen d'opérations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.