Abstract. The humid tropics are exposed to an unprecedented modernisation of agriculture involving rapid and mixed land-use changes with contrasted environmental impacts. Afforestation is often mentioned as an unambiguous solution for restoring ecosystem services and enhancing biodiversity. One consequence of afforestation is the alteration of streamflow variability which controls habitats, water resources, and flood risks. We demonstrate that afforestation by tree planting or by natural forest regeneration can induce opposite hydrological changes. An observatory including long-term field measurements of fine-scale land-use mosaics and of hydrometeorological variables has been operating in several headwater catchments in tropical southeast Asia since 2000. The GR2M water balance model, repeatedly calibrated over successive 1-year periods and used in simulation mode with the same year of rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments in Laos and Vietnam. Visual inspection of hydrographs, correlation analyses, and trend detection tests allowed causality between land-use changes and changes in seasonal streamflow to be ascertained. In Laos, the combination of shifting cultivation system (alternation of rice and fallow) and the gradual increase of teak tree plantations replacing fallow led to intricate streamflow patterns: pluri-annual streamflow cycles induced by the shifting system, on top of a gradual streamflow increase over years caused by the spread of the plantations.
Increases in tree mortality rates have been highlighted in different biomes over the past decades. However, disentangling the effects of climate change on the temporal increase in tree mortality from those of management and forest dynamics remains a challenge. Using a modelling approach taking tree and stand characteristics into account, we sought to evaluate the impact of climate change on background mortality for the most common European tree species. We focused on background mortality, which is the mortality observed in a stand in the absence of abrupt disturbances, to avoid confusion with mortality events unrelated to long-term changes in temperature and rainfall. We studied 372 974 trees including 7312 dead trees from forest inventory data surveyed across France between 2009 and 2015. Factors related to competition, stand characteristics, management intensity, and site conditions were the expected preponderant drivers of mortality. Taking these main drivers into account, we detected a climate change signal on 45% of the 43 studied species, explaining an average 6% of the total modelled mortality. For 18 out of the 19 species sensitive to climate change, we evidenced greater mortality with increasing temperature or decreasing rainfall. By quantifying the mortality excess linked to the current climate change for European temperate forest tree species, we provide new insights into forest vulnerability that will prove useful for adapting forest management to future conditions.
The humid tropics are exposed to an unprecedented modernization of agriculture involving rapid and highly-mixed land-use changes with contrasted environmental impacts. Afforestation is often mentioned as an unambiguous solution for restoring ecosystem services and enhancing biodiversity. One consequence of afforestation is the alteration of streamflow variability controlling habitats, water resources and flood risks. We demonstrate that afforestation by tree planting or by natural forest regeneration can induce opposite hydrological changes. An observatory including long-term field measurements of fine-scale land-use mosaics and of hydro-meteorological variables has been operating in several headwater catchments in tropical Southeast Asia since 2001. The GR2M water balance model repeatedly calibrated over successive 1 year periods, and used in simulation mode with specific rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments in Laos and Vietnam. Visual inspection of hydrographs, correlation analyses and trend detection tests allowed causality between land-use changes and changes in seasonal flows to be ascertained. In Laos, the combination of shifting cultivation system (alternation of rice and fallow) and the gradual increase of teak tree plantations replacing fallow, led to intricate flow patterns: pluri-annual flow cycles induced by the shifting system, on top of a gradual flow increase over years caused by the spread of the plantation. In Vietnam, the abandonment of continuously cropped areas mixed with patches of tree plantations led to the natural re-growth of forest communities followed by a gradual drop in streamflow. Soil infiltrability controlled by surface crusting is the predominant process explaining why two modes of afforestation (natural regeneration or planting) led to opposite changes in flow regime. Given that commercial tree plantations will continue to expand in the humid tropics, careful consideration is needed before attributing to them positive effects on water and soil conservation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.