Understanding drivers of biodiversity patterns is essential to evaluate the potential impact of deep-sea mining on ecosystems resilience. While the South West Pacific forms an independent biogeographic province for hydrothermal vent fauna, different degrees of connectivity among basins were previously reported for a variety of species depending on their ability to disperse. In this study, we compared phylogeographic patterns of several vent gastropods across South West Pacific back-arc basins and the newly-discovered La Scala site on the Woodlark Ridge by analysing their genetic divergence using a barcoding approach. We focused on six genera of vent gastropods widely distributed in the region: Lepetodrilus, Symmetromphalus, Lamellomphalus, Shinkailepas, Desbruyeresia and Provanna. A wide-range sampling was conducted at different vent fields across the Futuna Volcanic Arc, the Manus, Woodlark, North Fiji, and Lau Basins, during the CHUBACARC cruise in 2019. The Cox1-based genetic structure of geographic populations was examined for each taxon to delineate putative cryptic species and assess potential barriers or contact zones between basins. Results showed contrasted phylogeographic patterns among species, even between closely related species. While some species are widely distributed across basins (i.e. Shinkailepas tollmanni, Desbruyeresia melanioides and Lamellomphalus) without evidence of strong barriers to gene flow, others are restricted to one (i.e. Shinkailepas tufari complex of cryptic species, Desbruyeresia cancellata and D. costata). Other species showed intermediate patterns of isolation with different lineages separating the Manus Basin from the Lau/North Fiji Basins (i.e. Lepetodrilus schrolli, Provanna and Symmetromphalus spp.). Individuals from the Woodlark Basin were either endemic to this area (though possibly representing intermediate OTUs between the Manus Basin and the other eastern basins populations) or, coming into contact from these basins, highlighting the stepping-stone role of the Woodlark Basin in the dispersal of the South West Pacific vent fauna. Results are discussed according to the dispersal ability of species and the geological history of the South West Pacific.
Hydrothermal vents form archipelagos of ephemeral deep‐sea habitats that raise interesting questions about the evolution and dynamics of the associated endemic fauna, constantly subject to extinction‐recolonization processes. These metal‐rich environments are coveted for the mineral resources they harbour, thus raising recent conservation concerns. The evolutionary fate and demographic resilience of hydrothermal species strongly depend on the degree of connectivity among and within their fragmented metapopulations. In the deep sea, however, assessing connectivity is difficult and usually requires indirect genetic approaches. Improved detection of fine‐scale genetic connectivity is now possible based on genome‐wide screening for genetic differentiation. Here, we explored population connectivity in the hydrothermal vent snail Ifremeria nautilei across its species range encompassing five distinct back‐arc basins in the Southwest Pacific. The global analysis, based on 10,570 single nucleotide polymorphism (SNP) markers derived from double digest restriction‐site associated DNA sequencing (ddRAD‐seq), depicted two semi‐isolated and homogeneous genetic clusters. Demogenetic modeling suggests that these two groups began to diverge about 70,000 generations ago, but continue to exhibit weak and slightly asymmetrical gene flow. Furthermore, a careful analysis of outlier loci showed subtle limitations to connectivity between neighbouring basins within both groups. This finding indicates that migration is not strong enough to totally counterbalance drift or local selection, hence questioning the potential for demographic resilience at this latter geographical scale. These results illustrate the potential of large genomic data sets to understand fine‐scale connectivity patterns in hydrothermal vents and the deep sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.