Summary The Microemulsion phase behavior model based on oleic/aqueous/surfactant pseudophase equilibrium, commonly used in chemical-flooding simulators, is coupled to Gas/Oil/Water phase equilibrium in our new four-fluid-phase, fully implicit in-house research reservoir simulator (IHRRS) (Moncorgé et al. 2012). The method consists of splitting the equilibrium into two stages, in which all the components other than surfactant are equilibrated first—by use of a black-oil, K-value, or equation of state (EOS) model—and the resulting Gas, Oil, and Water phases are then lumped into pseudophases to be equilibrated by use of the Microemulsion model. This subdivision in stages is conceptual, and at each converged timestep the four phases (Gas, Oil, Water, and Microemulsion, when simultaneously present) will be in equilibrium with each other. The fluid properties (such as densities, viscosities, and interfacial tensions) and rock/fluid properties (such as relative permeabilities) required in the transport equations are evaluated with models from well-known industrial or academic simulators. Surfactant flooding being usually implemented as a tertiary recovery mechanism, on fields for which complete models that we do not wish to modify already exist, particular care is devoted to ensuring continuity of the physics at the onset of surfactant injection. Our code is first validated against a reference academic chemical-flooding simulator, on a 1D, three-fluid-phase (Oil/Water/Microemulsion) coreflood. Second, as application examples where it is necessary to account for four phases in equilibrium, we consider a scenario where the chemical flood is preceded by a vaporizing Gas drive, as well as a scenario where dissolved gas is released by the Oil during the flooding process. Some aspects of our implementation, such as numerical dispersion vs. timestep length and nonlinear convergence, are also discussed; in particular, we show that numerical performance is not degraded by the four-phase equilibrium.
The dynamic effect of pressure and Oil composition on Microemulsion phase behavior, complementing the key effect of variable salinity, has been implemented in our four-fluid-phase, fully implicit in-house research reservoir simulator. This has been achieved through self-consistent coupling of a traditional Gas/Oil/Water phase equilibrium model, either compositional or generalized black-oil,-providing phase fractions, oleic composition, and aqueous salinity-with a Microemulsion model based on oleic/aqueous/chemical pseudophase equilibrium.As an application example and validation test case, we consider a hypothetical surfactant/polymer (SP) coreflood of a saturated Oil, interrupted by a progressive depressurization, during which dissolved gas is released, which shifts the Microemulsion phase state from Winsor Type III to Type II -. This proves the good functioning of our new option, and shows, yet on a simple case, that it does not degrade numerical performance, despite the introduction of additional nonlinear dependencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.