Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI) involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity.
Cysteine-conjugated volatile thiols are powerful aromatic compounds that contribute to the fruity notes of many white wines and especially Sauvignon Blanc. Genetic selection programs of wine yeast starters able to produce more volatile thiols constitute, therefore, an important goal for the wine industry. Recent investigations on yeast metabolism suggested that the ß-lyase Irc7p and the control of its gene expression by nitrogen catabolite repression constitute a rational way for yeast genetic improvement. This work demonstrates that the use of a natural ure2 mutation can be used to design wine starters with an enhanced capacity of volatile thiols production. By applying backcrosses driven by molecular markers, this allelic form was introduced in different starter backgrounds. Our investigations demonstrate that the ure2 inheritance is able to enhance the production of 4MMP (recently renamed 4MSP) and 3MH (recently renamed 3SH). For 4MMP, this effect depends of the presence of the allele IRC7LT encoding a long form of the Irc7 protein. Moreover, a correlation in between the expression level of this allelic form and 4MMP production was found within industrial starters. All together, these results emphasised the use of molecular breeding for improving quantitative traits of industrial strains without the use of genetically modifying strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.