This is the first study that has provided evidence of a clear association between migraine phases (ictal and interictal) and plasma PACAP-38-LI alterations.
We have shown that somatostatin released from activated capsaicin-sensitive nociceptive nerve endings during inflammatory processes elicits systemic anti-inflammatory and analgesic effects. With the help of somatostatin receptor subtype 4 gene-deleted mice (sst4 ؊/؊ ), we provide here several lines of evidence that this receptor has a protective role in a variety of inflammatory disease models; several symptoms are more severe in the sst4 knockout animals than in their wild-type counterparts. Acute carrageenaninduced paw edema and mechanical hyperalgesia, inflammatory pain in the early phase of adjuvant-evoked chronic arthritis, and oxazolone-induced delayed-type hypersensitivity reaction in the skin are much greater in mice lacking the sst 4 receptor. Airway inflammation and consequent bronchial hyperreactivity elicited by intranasal lipopolysaccharide administration are also markedly enhanced in sst 4 knockouts, including increased perivascular/peribronchial edema, neutrophil/macrophage infiltration, mucus-producing goblet cell hyperplasia, myeloperoxidase activity, and IL-1, TNF-␣, and IFN-␥ expression in the inflamed lung. It is concluded that during these inflammatory conditions the released somatostatin has pronounced counterregulatory effects through sst4 receptor activation. Thus, this receptor is a promising novel target for developing anti-inflammatory, analgesic, and anti-asthmatic drugs.allergic contact dermatitis ͉ arthritis ͉ capsaicin-sensitive afferents ͉ endotoxin-induced pneumonitis ͉ inflammatory cytokines
The aetiology of complex regional pain syndrome (CRPS), a highly painful, usually post-traumatic condition affecting the limbs, is unknown, but recent results have suggested an autoimmune contribution. To confirm a role for pathogenic autoantibodies, we established a passive-transfer trauma model. Prior to undergoing incision of hind limb plantar skin and muscle, mice were injected either with serum IgG obtained from chronic CRPS patients or matched healthy volunteers, or with saline. Unilateral hind limb plantar skin and muscle incision was performed to induce typical, mild tissue injury. Mechanical hyperalgesia, paw swelling, heat and cold sensitivity, weight-bearing ability, locomotor activity, motor coordination, paw temperature, and body weight were investigated for 8days. After sacrifice, proinflammatory sensory neuropeptides and cytokines were measured in paw tissues. CRPS patient IgG treatment significantly increased hind limb mechanical hyperalgesia and oedema in the incised paw compared with IgG from healthy subjects or saline. Plantar incision induced a remarkable elevation of substance P immunoreactivity on day 8, which was significantly increased by CRPS-IgG. In this IgG-transfer-trauma model for CRPS, serum IgG from chronic CRPS patients induced clinical and laboratory features resembling the human disease. These results support the hypothesis that autoantibodies may contribute to the pathophysiology of CRPS, and that autoantibody-removing therapies may be effective treatments for long-standing CRPS.
Our results pointed to utilisable NTG formulations and outcome measures for NTG-induced migraine models in mice. Pending further cross-validation with positive and negative control drugs in these mouse models and in the human NTG models of migraine, these tests might be valuable translational research tools for development of new anti-migraine drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.