Abstract. For a wide class of linear functional equations the solutions are generalized polynomials. The existence of non-trivial monomial terms of the solution strongly depends on the algebraic properties of some related families of parameters. As a continuation of the previous work [A. Varga, Cs. Vincze, G. Kiss, Algebraic methods for the solution of linear functional equations, Acta Math. Hungar.] we are going to present constructive algebraic methods of the solution in some special cases. Explicit examples will be also given.
belongs to the class of linear functional equations. The solutions form a linear space with respect to the usual pointwise operations. According to the classical results of the theory they must be generalized polynomials. New investigations have been started few years ago. They clarified that the existence of non-trivial solutions depends on the algebraic properties of some related families of parameters. The problem is to find the necessary and sufficient conditions for the existence of non-trivial solutions in terms of these kinds of properties. One of the most earlier results is due to Z. Daróczy [1]. It can be considered as the solution of the problem in case of n = 2. We are going to take more steps forward by solving the problem in case of n = 3.
Abstract. In this paper we investigate the functional equationwhich holds for all x ∈ R with an unknown additive function A : R → R and fixed real parameters α i , β i , where i = 1, . . . , n. Here we give sufficient and necessary conditions for the existence of non-trivial additive solutions of equation above in some cases depending on the algebraic properties of the parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.