Variation in forest canopy structure influences both understory light availability and its spatial distribution. Because light is a major environmental factor limiting growth and survival of many forest species, its distribution may affect stand-level regeneration patterns. We examined spatial patterning in light availability and seedling regeneration in old-growth, second-growth, and selectively logged stands of tropical moist forest in northeastern Costa Rica. Our objectives were to determine how the frequency distribution and spatial pattern of understory light ''microsites'' differ among tropical wet forests; whether patterns of seedling regeneration are linked to spatial patterning of light availability; and whether these relationships differ among old-growth, second-growth, and selectively logged forest stands. We used both sensor-based and hemispherical photograph-based methods to measure light availability along three 130-160 m long transects in each of eight stands (three old-growth, three second-growth, and two selectively logged). Woody seedling abundance was assessed at 4 m 2 , 25 m 2 , and full-stand scales (430 m 2 ), and species richness was computed at the 25-m 2 and full-stand levels. Data were analyzed using both conventional parametric approaches and spatial statistics. Mean light availability did not differ markedly among stand types, but variance and frequency distributions of light availability did. Second-growth stands had significantly higher unweighted canopy openness along solar tracks and a higher frequency of microsites at intermediate light levels. Old-growth stands had greater representation of both low-and high-light microsites, and greater overall variance in light availability. Old-growth stands also had slightly higher abundance and species richness of woody seedlings. Light availability was significantly spatially autocorrelated in all stand types, but patch size (analogous to gap size) was twice as large in old-growth stands, based on sensor data. Seedling abundance was also spatially autocorrelated over greater distances in old-growth than in second-growth stands, often at similar spatial scales to light distribution. The selectively logged stands demonstrated spatial autocorrelation of light and seedling abundance over distances intermediate to the other two stand types. Despite the similarities in patterns of light and seedling distributions, relationships between woody seedling abundance, species richness, and the three light availability measures were not strong or consistently positive, regardless of whether standard regressions or partial Mantel tests were applied. Although seedling abundance is likely to be affected by a wide variety of factors, the similarities in the scales of spatial autocorrelation of light and seedling abundance suggest that current seedling abundance distributions may reflect past patterns of light distribution within the stands. Our results confirm the importance of examining spatial dependence of resource availability in studies of forest dynami...
We introduce the AusTraits database - a compilation of measurements of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 375 traits across 29230 taxa from field campaigns, published literature, taxonomic monographs, and individual taxa descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological parameters (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual-, species- and genus-level observations coupled to, where available, contextual information on site properties. This data descriptor provides information on version 2.1.0 of AusTraits which contains data for 937243 trait-by-taxa combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data to increase our collective understanding of the Australian flora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.