Protein kinase C (PKC) isozymes comprise a family of related enzymes. There are only limited differences between these isozymes in substrate specificity or sensitivity to activators. However, there are multiple isozymes within a cell mediating isozyme-specific functions. Differential subcellular localization has been proposed to explain this specificity. When members of the PKC family are activated by lipid-derived second messengers, they translocate from one cell compartment to another. Isozyme specificity appears to be mediated in part by association of each PKC isozyme with specific anchoring proteins. This review will cover the proteins involved in the anchoring of PKC isozymes at specific subcellular sites, the domains in the PKC isozymes that mediate protein-protein interaction with isozyme-specific anchoring proteins, and identification of peptides that interfere with or promote these protein-protein interactions, thus altering the localization and function of individual isozymes.
Recent advances in neuroscience have made it possible to investigate the pathophysiology of alcoholism at a cellular and molecular level. Evidence indicates that ethanol affects hormone- and neurotransmitter-activated signal transduction, leading to short-term changes in regulation of cellular functions and long-term changes in gene expression. Such changes in the brain probably underlie many of the acute and chronic neurological events in alcoholism. In addition, genetic vulnerability also plays a role in alcoholism and, perhaps, in alcoholic medical disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.