[1] The Canadian Ice Service Digital Archive (CISDA) is a compilation of weekly ice charts covering Canadian waters from the early 1960s to present. The main sources of uncertainty in the database are reviewed and the data are validated for use in climate studies before trends and variability in summer averaged sea ice cover are investigated. These data revealed that between 1968 and 2008, summer sea ice cover has decreased by 11.3% ± 2.6% decade −1 in Hudson Bay, 2.9% ± 1.2% decade −1 in the Canadian Arctic Archipelago (CAA), 8.9% ± 3.1% decade −1 in Baffin Bay, and 5.2% ± 2.4% decade −1 in the Beaufort Sea with no significant reductions in multiyear ice. Reductions in sea ice cover are linked to increases in early summer surface air temperature (SAT); significant increases in SAT were observed in every season and they are consistently greater than the pan-Arctic change by up to ∼0.2°C decade −1 . Within the CAA and Baffin Bay, the El Niño-Southern Oscillation index correlates well with multiyear ice coverage (positive) and first-year ice coverage (negative) suggesting that El Niño episodes precede summers with more multiyear ice and less first-year ice. Extending the trend calculations back to 1960 along the major shipping routes revealed significant decreases in summer sea ice coverage ranging between 11% and 15% decade −1 along the route through Hudson Bay and 6% and 10% decade −1 along the southern route of the Northwest Passage, the latter is linked to increases in SAT. Between 1960 and2008, no significant trends were found along the northern western Parry Channel route of the Northwest Passage.
Although cruise travel to the Canadian Arctic has grown steadily since 1984, some commentators have suggested that growth in this sector of the tourism industry might accelerate, given the warming effects of climate change that are making formerly remote Canadian Arctic communities more accessible to cruise vessels. Using sea-ice charts from the Canadian Ice Service, we argue that Global Climate Model predictions of an ice-free Arctic as early as 2050-70 may lead to a false sense of optimism regarding the potential exploitation of all Canadian Arctic waters for tourism purposes. This is because climate warming is altering the character and distribution of sea ice, increasing the likelihood of hullpenetrating, high-latitude, multi-year ice that could cause major pitfalls for future navigation in some places in Arctic Canada. These changes may have negative implications for cruise tourism in the Canadian Arctic, and, in particular, for tourist transits through the Northwest Passage and High Arctic regions.
A remotely sensed sea ice melt algorithm utilizing SeaWinds/QuikSCAT (QuikSCAT) data is developed and applied to sea ice the Canadian Arctic Archipelago (CAA) from 2000 to 2004. The extended advanced very high resolution radiometer Polar Pathfinder (APP‐x) data set is used to identify spatially coupled relationships between sea ice melt and radiative forcings. In situ data from the Collaborative Interdisciplinary Cryospheric Experiment (C‐ICE) (2000, 2001, and 2002) and the Canadian Arctic Shelf Exchange Study (CASES) (2004) are used to validate APP‐x data during the melt period. QuikSCAT‐detected maps of melt onset, pond onset, and drainage are created from 2000 to 2004, and results indicate considerable interannual variability of melt dynamics within the CAA. In some years, melt stages are positively spatially autocorrelated, whereas other years exhibit a negative or no spatial autocorrelation. QuikSCAT‐detected stages of melt are found to be influenced by interannual varying amounts and timing of radiative forcing making prediction difficult. The spatiotemporal variability of ice melt also influences the distribution of ice within the CAA. The lower‐latitude regions of the CAA are shown to have accumulated increasing concentrations of multiyear ice from 2000 to 2005. This paper concludes with a discussion of the interplay between thermodynamic and dynamic sea ice processes likely to have contributed to this trend.
During the International Polar Year (IPY), comprehensive observational research programs were undertaken to increase our understanding of the Canadian polar cryosphere response to a changing climate. Cryospheric components considered were snow, permafrost, sea ice, freshwater ice, glaciers and ice shelves. Enhancement of conventional observing systems and retrieval algorithms for satellite measurements facilitated development of a snapshot of current cryospheric conditions, providing a baseline against which future change can be assessed. Key findings include: 1. surface air temperatures across the Canadian Arctic exhibit a warming trend in all seasons over the past 40 years. A consistent pan-cryospheric response to these warming temperatures is evident through the analysis of multi-decadal datasets; 2. in recent years (including the IPY period) a higher rate of change was observed compared to previous decades including warming permafrost, reduction in snow cover extent and duration, reduction in summer sea ice extent, increased mass loss from glaciers, and thinning and break-up of the remaining Canadian ice shelves. These changes illustrate both a reduction in the spatial extent and mass of the cryosphere and an increase in the temporal persistence of melt related parameters. The observed changes in the cryosphere have important implications for human activity including the close ties of northerners to the land, access to northern regions for natural resource development, and the integrity of northern infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.