Metabolic 'oligosaccharide engineering' methods based on N-acetyl-D-mannosamine (ManNAc) analogs allow the glycocalyx of living cells to be remodeled. Herein we report the analog Ac(5)ManNTGc (1) that enables thiols to be expressed in surface sialic acids. By locating this versatile functional group on the outer periphery of normally nonadhesive human Jurkat cells, we obtained spontaneous cell-cell clustering and attachment to complementary maleimide-derivatized substrates. When analyzed in human embryoid body-derived (hEBD) stem cells, Ac(5)ManNTGc induced beta-catenin expression and altered cell morphology, consistent with neuronal differentiation. Notably, these effects were modulated by the growth substrate of the cells, with a stronger response observed on a gold surface than on glass. Together, these results establish sugar analogs as small-molecule tools for tissue engineering by providing a method for attaching cells to scaffolds via their surface carbohydrates as well as offering a means to influence stem cell fates.
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.Sialic acids, 9-carbon amino-monosaccharides, are ubiquitously displayed on mammalian cell surfaces. These sugars modulate biological and pathological events ranging from development and immune function to tumor biology and the viral and bacterial infection of cells (1-3). Not surprisingly, factors that influence the biosynthesis of sialic acid-containing glycoconjugates are of great interest due to the ever growing list of cellular functions influenced by this sugar. The biochemical steps that control sialic acid production, outlined in Fig. 1, have been intensely investigated in recent years (4) with a particular focus given to the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE).2 Whereas GNE is known to control flux into the sialic acid biosynthetic pathway through conversion of UDP-GlcNAc to ManNAc (5) and has been described as the key determinant in the surface display of sialoglycans (6), the biological activity of this protein and its impact in health and disease remain far from understood. In particular, accumulating evidence that healthy cells maintain higher levels of GNE than required for sialic acid production raises the possibility that GNE may be a "moonlighting" protein that serves multiple functions within a cell (7,8).The hypothesis that cells have "excess" GNE is based...
The sialic acid biosynthetic pathway in mammalian cells utilizes N-acetyl-D-mannosamine (ManNAc) as a natural metabolic precursor and has the remarkable ability to biosynthetically process non-natural ManNAc analogs. Herein, we describe a recipe-style protocol for the synthesis of the novel peracetylated analog Ac5ManNTGc (1) that contains a pendant acetylthio- group and enables incorporation of thiol functionalities into the glycocalyx of living cells. We also describe the synthesis of the oxygen analog Ac5ManNGc (2), which serves as an appropriate control compound for biological experiments with 1. Both 1 and 2 were prepared from a reported, common intermediate 8, which is selectively acetylated at the hydroxyl groups. In contrast to previous methods, this synthetic approach introduces O-acetyl groups first, followed by N-acylation. Starting from the commercially available D-mannosamine hydrochloride (5), gram quantities of both 1 and 2 can be prepared over five steps in about 2-3 weeks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.