Non-linear partial differential equations have been increasingly used to model the price of options in the realistic market setting when transaction costs arising in the hedging of portfolios are taken into account. This paper focuses on finding the numerical solution of the non-linear partial differential equation corresponding to a Bermudan call option price with variable transaction costs for an asset under the information-based framework. The finite difference method is implemented to approximate the option price and its Greeks. Numerical examples are presented and the option prices compared to the closed-form solution of the information-based model and the Black Scholes model with zero transaction costs. The results show that the approximated option prices correspond to the analytical solution of the information-based model but are slightly higher than the prices under Black-Scholes model. These findings validate the finite difference method as an efficient way of approximating the information-based non-linear partial differential equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.