The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk.
Background: Feed-forward motifs are important functional modules in biological and other complex networks. The functionality of feed-forward motifs and other network motifs is largely dictated by the connectivity of the individual network components. While studies on the dynamics of motifs and networks are usually devoted to the temporal or spatial description of processes, this study focuses on the relationship between the specific architecture and the overall rate of the processes of the feed-forward family of motifs, including double and triple feed-forward loops. The search for the most efficient network architecture could be of particular interest for regulatory or signaling pathways in biology, as well as in computational and communication systems.
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.
Two strategies for fighting cancer by modulating FASL-induced apoptosis were modeled by 2D-cellular automata. Our models predict that cancer cells can be killed by maximizing the apoptosis via joint suppression of FLIP and IAP inhibitors by siRNA and SMAC proteins, respectively. It was also predicted that the presumed feedback loop CASP3-->CASP9-->|IAP in the intrinsic pathway accelerates the apoptosis, but does not change significantly the concentration of DFF40, the protein that decomposes DNA. The alternative strategy of preventing the killing of the immune system's T-cells, via minimizing their tumor-induced FAS-L apoptosis by overexpression of FLIP and IAP, was also shown to be promising with a predicted considerable synergy action of the two inhibitors. Dual suppression or overexpression of apoptosis inhibitors emerges thus as promising approach in the fight against cancer. Our modeling has also brought some light on the process of turning type-I cells into type-II ones, which emerges as compensatory mechanism in case of damaged or silenced FASL pathway by preserving about the same self-death level at only 10-12% lower performance rate.
A preceding study analysed how the topology of network motifs affects the overall rate of the underlying biochemical processes. Surprisingly, it was shown that topologically non-isomorphic motifs can still be isodynamic in the sense that they exhibit the exact same performance rate. Because of the high prevalence of feed-forward functional modules in biological networks, one may hypothesize that evolution tends to favour motifs with faster dynamics. As a step towards ranking the efficiency of feed-forward network motifs, we use a linear flow model to prove theorems establishing that certain classes of motifs are isodynamic. In partitioning the class of all motifs on n nodes into equivalence classes based upon their dynamics, we establish a basis for comparing the efficiency/performance rates of different motifs. The potential biological importance of the theorems is briefly discussed and is the subject of an ongoing large-scale project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.