In this paper, we study the relationship between the mapping class group of an infinite-type surface and the simultaneous flip graph, a variant of the flip graph for infinite-type surfaces defined by Fossas and Parlier [8]. We show that the extended mapping class group is isomorphic to a proper subgroup of the automorphism group of the flip graph, unlike in the finite-type case. This shows that Ivanov's metaconjecture, which states that any "sufficiently rich" object associated to a finite-type surface has the extended mapping class group as its automorphism group, does not extend to simultaneous flip graphs of infinite-type surfaces.
In this paper, we study the relationship between the mapping class group of an infinite-type surface and the simultaneous flip graph, a variant of the flip graph for infinite-type surfaces defined by Fossas and Parlier [6]. We show that the extended mapping class group is isomorphic to a proper subgroup of the automorphism group of the flip graph, unlike in the finite-type case. This shows that Ivanov's metaconjecture, which states that any “sufficiently rich" object associated to a finite-type surface has the extended mapping class group as its automorphism group, does not extend to simultaneous flip graphs of infinite-type surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.