The current pandemic resulted from SARS-CoV-2 still remains as the major public health concern globally. The precise mechanism of viral pathogenesis is not fully understood, which remains a major hurdle for medical intervention. Here we generated an interactome profile of protein-protein interactions based on host and viral protein structural similarities information. Further computational biological study combined with Gene enrichment analysis predicted key enriched pathways associated with viral pathogenesis. The results show that axon guidance, membrane trafficking, vesicle-mediated transport, apoptosis, clathrin-mediated endocytosis, Vpu mediated degradation of CD4 T cell, and interferon-gamma signaling are key events associated in SARS-CoV-2 life cycle. Further, degree centrality analysis reveals that IRF1/9/7, TP53, and CASP3, UBA52, and UBC are vital proteins for IFN-γ-mediated signaling, apoptosis, and proteasomal degradation of CD4, respectively. We crafted chronological events of the virus life cycle. The SARS-CoV-2 enters through clathrin-mediated endocytosis, and the genome is trafficked to the early endosomes in a RAB5-dependent manner. It is predicted to replicate in a double-membrane vesicle (DMV) composed of the endoplasmic reticulum, autophagosome, and ERAD machinery. The SARS-CoV-2 down-regulates host translational machinery by interacting with protein kinase R, PKR-like endoplasmic reticulum kinase, and heme-regulated inhibitor and can phosphorylate eIF2a. The virion assembly occurs in the ER-Golgi intermediate compartment (ERGIC) organized by the spike and matrix protein. Collectively, we have established a spatial link between viral entry, RNA synthesis, assembly, pathogenesis, and their associated diverse host factors, those could pave the way for therapeutic intervention.
No abstract
Background Bovine ephemeral fever (BEF) is a re-emerging disease caused by bovine ephemeral fever virus (BEFV). Although it poses a huge economic threat to the livestock sector, complete viral genome information from any South Asian country, including India, lacks. Aim Genome characterization of the first Indian BEFV isolate and to evaluate its genetic diversity by characterizing genomic mutations and their associated protein dynamics. Materials and Methods Of the nineteen positive blood samples collected from BEF symptomatic animals during the 2018-19 outbreaks in India, one random sample was used to amplify the entire viral genome by RT-PCR. Utilizing Sanger sequencing and NGS technology, a complete genome was determined. Genome characterization, genetic diversity and phylogenetic analyses were explored by comparing the results with available global isolates. Additionally, unique genomic mutations within the Indian isolate were investigated, followed by in-silico assessment of non-synonymous (NS) mutations impacts on corresponding proteins’ secondary structure, solvent accessibility and dynamics. Results The complete genome of Indian BEFV has 14,903 nucleotides with 33% GC with considerable genetic diversity. Its sequence comparison and phylogenetic analysis revealed a close relatedness to the Middle Eastern lineage. Genome-wide scanning elucidated 30 unique mutations, including 10 NS mutations in the P, L and G NS proteins. The mutational impact evaluation confirmed alterations in protein structure and dynamics, with minimal effect on solvent accessibility. Additionally, alteration in the interatomic interactions was compared against the wild type. Conclusion These findings extend our understanding of the BEFV epidemiological and pathogenic potential, aiding in developing better therapeutic and preventive interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.