This paper presents the fabrication and characterization of a flexible, flat, miniaturized fluxgate sensor with a thin amorphous rectangular magnetic core fabricated by the pad/printing technique. Both the design and the various printing steps of the sensor are presented. The fluxgate sensor comprises of solenoid coils, and to the best of our knowledge, is the first to be printed with a conventional micro-printing technique. The magnetic core is a non-printed component, placed between the printed layers. The sensor’s linear measuring range is ±40 µT with 2% full-scale linearity error, at 100 kHz excitation frequency. The highest measured sensitivity reaches 14,620 V/T at 200 kHz, while the noise of the sensor was found to be 10 nT/ Hz at 1 Hz.
A flexible flat micro-Fluxgate sensor with amorphous rectangular core, fabricated using a simple printing technique is presented. All materials were selected to facilitate the fabrication process and to achieve optimal sensor performance. The device's response to an externally applied magnetic field has been studied. The linear measuring range of the sensor is approximately ±40 μT with a linearity error of <2% FS at 100 kHz excitation frequency, allowing the measurement of the terrestrial magnetic field. Experimental results demonstrate that the behaviour of the fabricated device corresponds to the behaviour of a Fluxgate sensor with high sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.