Three methods widely employed in the evaluation of antioxidant activity, namely 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method, static headspace gas chromatography (HS-GC) and beta-carotene bleaching test (BCBT), have been compared with regard to their application in the screening of plant extracts. The strengths and limitations of each method have been illustrated by testing a number of extracts, of differing polarity, from plants of the genus Sideritis, and two known antioxidants (butylated hydroxytoluene and rosmarinic acid). The sample polarity was important for the exhibited activity in the BCBT and HS-GC methods but not for the DPPH method. The complex composition of the extracts and partition phenomena affected their activity in each assay. The value of the BCBT method appears to be limited to less polar samples. Although slow, the HS-GC method is preferable for assessing the antioxidant inhibitory properties on the formation of unwanted secondary volatile products. Being rapid, simple and independent of sample polarity, the DPPH method is very convenient for the quick screening of many samples for radical scavenging activity.
2,2-Diphenyl-1-picrylhydrazyl radical (DPPH*) scavenging activity-guided fractionation of a leaf extract of Thymus vulgaris led to the isolation of the radical scavengers rosmarinic acid 1, eriodictyol, taxifolin, luteolin 7-glucuronide, p-cymene 2,3-diol, p-cymene 2,3-diol 6-6'-dimer, carvacrol, thymol, and a new compound, 2. The fractionation was considerably facilitated by using an on-line HPLC detector for radical scavenging activity. In this detector activity is monitored as the disappearance of the color of a postcolumn added stable radical after reacting with radical scavengers in a reaction coil. Compound 2, which consists of rosmarinic and caffeic acid moieties linked via a C-3'-C-8' ' ether bridge, was mainly elucidated by various NMR techniques and CD. Phenylpropanoid trimer 2 was a weaker and stronger radical scavenger than rosmarinic acid 1 in off-line TEAC and DPPH* assays, respectively.
Many plant species are known to emit herbivore-induced volatiles in response to herbivory. The spider mite Tetranychus urticae Koch is a generalist that can feed on several hundreds of host plant species. Volatiles emitted by T. urticae-infested plants of 11 species were compared: soybean (Glycine max), golden chain (Laburnum anagyroides), black locust (Robinia pseudo-acacia), cowpea (Vigna unguiculata), tobacco (Nicotiana tabacum), eggplant (Solanum melalonga), thorn apple (Datura stramonium), sweet pepper (Capsicum annuum), hop (Humulus lupulus), grapevine (Vitis vinifera), and ginkgo (Ginkgo biloba). The degree to which the plant species produced novel compounds was analyzed when compared to the odors of mechanically damaged leaves. Almost all of the investigated plant species produced novel compounds that dominated the volatile blend, such as methyl salicylate, terpenes, oximes, and nitriles. Only spider mite-infested eggplant and tobacco emitted a blend that was merely quantitatively different from the blend emitted by mechanically damaged or clean leaves. We hypothesized that plant species with a low degree of direct defense would produce more novel compounds. However, although plant species with a low direct defense level do use indirect defense to defend themselves, they do not always emit novel compounds. Plant species with a high level of direct defense seem to invest in the production of novel compounds. When plant species of the Fabaceae were compared to plant species of the Solanaceae, qualitative differences in spider mite-induced volatile blends seemed to be more prominent in the Fabaceae than in the Solanaceae.
The leaves and especially the roots of chicory (Cichorium intybus L.) contain high concentrations of bitter sesquiterpene lactones such as the guianolides lactupicrin, lactucin, and 8-deoxylactucin. Eudesmanolides and germacranolides are present in smaller amounts. Their postulated biosynthesis through the mevalonatefarnesyl diphosphate-germacradiene pathway has now been confirmed by the isolation of a (؉)-germacrene A synthase from chicory roots. This sesquiterpene cyclase was purified 200-fold using a combination of anion-exchange and dye-ligand chromatography. It has a K m value of 6.6 M, an estimated molecular mass of 54 kD, and a (broad) pH optimum around 6.7. Germacrene A, the enzymatic product, proved to be much more stable than reported in literature. Its heat-induced Cope rearrangement into (؊)--elemene was utilized to determine its absolute configuration on an enantioselective gas chromatography column. To our knowledge, until now in sesquiterpene biosynthesis, germacrene A has only been reported as an (postulated) enzyme-bound intermediate, which, instead of being released, is subjected to additional cyclization(s) by the same enzyme that generated it from farnesyl diphosphate. However, in chicory germacrene A is released from the sesquiterpene cyclase. Apparently, subsequent oxidations and/or glucosylation of the germacrane skeleton, together with a germacrene cyclase, determine whether guaiane-or eudesmane-type sesquiterpene lactones are produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.