Self-driving cars, autonomous vehicles (AVs), and connected cars combine the Internet of Things (IoT) and automobile technologies, thus contributing to the development of society. However, processing the big data generated by AVs is a challenge due to overloading issues. Additionally, near real-time/real-time IoT services play a significant role in vehicle safety. Therefore, the architecture of an IoT system that collects and processes data, and provides services for vehicle driving, is an important consideration. In this study, we propose a fog computing server model that generates a high-definition (HD) map using light detection and ranging (LiDAR) data generated from an AV. The driving vehicle edge node transmits the LiDAR point cloud information to the fog server through a wireless network. The fog server generates an HD map by applying the Normal Distribution Transform-Simultaneous Localization and Mapping(NDT-SLAM) algorithm to the point clouds transmitted from the multiple edge nodes. Subsequently, the coordinate information of the HD map generated in the sensor frame is converted to the coordinate information of the global frame and transmitted to the cloud server. Then, the cloud server creates an HD map by integrating the collected point clouds using coordinate information.
To provide a service that guarantees driver comfort and safety, a platform utilizing connected car big data is required. This study first aims to design and develop such a platform to improve the function of providing vehicle and road condition information of the previously defined central Local Dynamic Map (LDM). Our platform extends the range of connected car big data collection from OBU (On Board Unit) and CAN to camera, LiDAR, and GPS sensors. By using data of vehicles being driven, the range of roads available for analysis can be expanded, and the road condition determination method can be diversified. Herein, the system was designed and implemented based on the Hadoop ecosystem, i.e., Hadoop, Spark, and Kafka, to collect and store connected car big data. We propose a direction of the cooperative intelligent transport system (C-ITS) development by showing a plan to utilize the platform in the C-ITS environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.