To determine the error rate of transcription in human cells, we analyzed the transcriptome of H1 human embryonic stem cells with a circle-sequencing approach that allows for high-fidelity sequencing of the transcriptome. These experiments identified approximately 100,000 errors distributed over every major RNA species in human cells. Our results indicate that different RNA species display different error rates, suggesting that human cells prioritize the fidelity of some RNAs over others. Cross-referencing the errors that we detected with various genetic and epigenetic features of the human genome revealed that the in vivo error rate in human cells changes along the length of a transcript and is further modified by genetic context, repetitive elements, epigenetic markers, and the speed of transcription. Our experiments further suggest that BRCA1, a DNA repair protein implicated in breast cancer, has a previously unknown role in the suppression of transcription errors. Finally, we analyzed the distribution of transcription errors in multiple tissues of a new mouse model and found that they occur preferentially in neurons, compared to other cell types. These observations lend additional weight to the idea that transcription errors play a key role in the progression of various neurological disorders, including Alzheimer’s disease.
Through the lens of model-based reasoning, this work explores and uncovers important differences in how experts and novices conceptualize and reason about genes and gene expression. Findings from this work will help inform future research into the development and refinement of mental models.
The discovery and development of Caenorhabditis elegans as a model organism was influential in biology, particularly in the field of aging. Many historical and contemporary studies have identified thousands of lifespan-altering paradigms, including genetic mutations, transgenic gene expression, and hormesis, a beneficial, low-grade exposure to stress. With its many advantages, including a short lifespan, easy and low-cost maintenance, and fully sequenced genome with homology to almost two-thirds of all human genes, C. elegans has quickly been adopted as an outstanding model for stress and aging biology. Here, several standardized methods are surveyed for measuring lifespan and healthspan that can be easily adapted into almost any research environment, especially those with limited equipment and funds. The incredible utility of C. elegans is featured, highlighting the capacity to perform powerful genetic analyses in aging biology without the necessity of extensive infrastructure. Finally, the limitations of each analysis and alternative approaches are discussed for consideration.
The discovery and development of Caenorhabditis elegans as a model organism was influential in biology, particularly in the field of aging. Many historical and contemporary studies have identified thousands of lifespan-altering paradigms, including genetic mutations, transgenic gene expression, and hormesis, a beneficial, low-grade exposure to stress. With its many advantages, including a short lifespan, easy and low-cost maintenance, and fully sequenced genome with homology to almost two-thirds of all human genes, C. elegans has quickly been adopted as an outstanding model for stress and aging biology. Here, several standardized methods are surveyed for measuring lifespan and healthspan that can be easily adapted into almost any research environment, especially those with limited equipment and funds. The incredible utility of C. elegans is featured, highlighting the capacity to perform powerful genetic analyses in aging biology without the necessity of extensive infrastructure. Finally, the limitations of each analysis and alternative approaches are discussed for consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.