Nanocomposites comprising plasmon active metal nanostructures and semiconductors have been used to control the charge states in the metal to support catalytic activity. In this context dichalcogenides when combined with metal oxides offer the potential to control charge states in plasmonic nanomaterials. Using a model plasmonic mediated oxidation reaction p-amino thiophenol ↔ p-nitrophenol, we show that through the introduction of transition metal dichalcogenide nanomaterial, reaction outcomes can be influenced, achieved through controlling the occurrence of the reaction intermediate dimercaptoazobenzene by opening new electron transfer routes in a semiconductor-plasmonic system. This study demonstrates the ability to control plasmonic reactions by carefully controlling the choice of semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.