a b s t r a c tClose-packed cubic copper ferrites (CuFe 2 O 4 ) nanoparticles were synthesized using an effective thermaltreatment method directly from an aqueous solution containing copper and iron nitrates as metal precursors and poly(vinyl pyrrolidone) as a capping agent. The FTIR spectra of the calcined samples revealed the vibration bands of Fe-O and Cu-O at 315 and 535 nm respectively. The structural, morphological, optical and magnetic properties of the nanocrystal powder samples were analyzed using various characterization techniques. The powder X-ray diffraction unveiled the formation of spinel phase of CuFe 2 O 4 with the average particle size determined from TEM images increased from 24 to 34 nm at the calcination temperatures between 773 and 1173 K. The band gap calculated using Kubelka-Munk function from the UV-visible diffuse reflectance spectra decreased from 2.64 to 2.45 eV with increasing calcination temperature. The electron spin resonance (ESR) spectroscopy confirmed the presence of unpaired electrons in the calcined samples. The g-factor increased from 2.10497 to 2.57056 and the resonance magnetic field decreased from 3.11599 Â 10 À 7 to 2.55161 Â 10 À 7 A/m with increasing calcination temperature.
Abstract:Colloidal cadmium selenide (CdSe) and zinc selenide (ZnSe) quantum dots with a hexagonal structure were synthesized by irradiating an aqueous solution containing metal precursors, poly (vinyl pyrrolidone), isopropyl alcohol, and organic solvents with 1.25-MeV gamma rays at a dose of 120 kGy. The radiolytic processes occurring in water result in the nucleation of particles, which leads to the growth of the quantum dots. The physical properties of the CdSe and ZnSe nanoparticles were measured by various characterization techniques. X-ray diffraction (XRD) was used to confirm the nanocrystalline structure, energy-dispersive X-ray spectroscopy (EDX) was used to estimate the material composition of the samples, transmission electron microscopy (TEM) was used to determine the morphologies and average particle size distribution, and UV-visible spectroscopy was used to measure the optical absorption spectra, from which the band gap of the CdSe and ZnSe nanoparticles could be deduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.