Gastric cancers are the most frequent gastric malignancy and usually arise in the sequence of Helicobacter pylori-associated chronic gastritis. CpG methylation is a central mechanism of epigenetic gene regulation affecting cancer-related genes, and occurs early in gastric carcinogenesis. DNA samples from non-metaplastic gastric mucosa with variable levels of gastritis (non-metaplastic mucosa), intestinal metaplasia, or gastric cancer were screened with methylation arrays for CpG methylation of cancer-related genes and 30 gene targets were further characterized by high-definition bisulfite next-generation sequencing. In addition, data from The Cancer Genome Atlas were analyzed for correlation of methylation with gene expression. Overall, 13 genes had significantly increased CpG methylation in gastric cancer vs non-metaplastic mucosa (BRINP1, CDH11, CHFR, EPHA5, EPHA7, FGF2, FLI1, GALR1, HS3ST2, PDGFRA, SEZ6L, SGCE, and SNRPN). Further, most of these genes had corresponding reduced expression levels in gastric cancer compared with intestinal metaplasia, including novel hypermethylated genes in gastric cancer (FLI1, GALR1, SGCE, and SNRPN), suggesting that they may regulate neoplastic transformation from non-malignant intestinal metaplasia to cancer. Our data suggest a tumor-suppressor role for FLI1 in gastric cancer, consistent with recently reported data in breast cancer. For the genes with strongest methylation/expression correlation, namely FLI1, the expression was lowest in microsatellite-unstable tumors compared with other gastric cancer molecular subtypes. Importantly, reduced expression of hypermethylated BRINP1 and SGCE was significantly associated with favorable survival in gastric cancer. In summary, we report novel methylation gene targets that may have functional roles in discrete stages of gastric carcinogenesis and may serve as biomarkers for diagnosis and prognosis of gastric cancer.
Barrett's intestinal metaplasia (BIM) may harbor genomic mutations before the histologic appearance of dysplasia and cancer and requires frequent surveillance. We explored next-generation sequencing to detect mutations with the analytical sensitivity required to predict concurrent high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC) in patients with Barrett's esophagus by testing nonneoplastic BIM. Formalin-fixed, paraffin-embedded (FFPE) routine biopsy or endoscopic mucosal resection samples from 32 patients were tested: nonprogressors to HGD or EAC (BIM-NP) with BIM, who never had a diagnosis of dysplasia or EAC (N = 13); progressors to HGD or EAC (BIM-P) with BIM and a worse diagnosis of HGD or EAC (N = 15); and four BIM-negative samples. No mutations were detected in the BIM-NP (0 of 13) or BIM-negative samples, whereas the BIM-P samples had mutations in 6 (75%) of 8 cases in TP53, APC, and CDKN2A (P = 0.0005), detected in samples with as low as 20% BIM. We found that next-generation sequencing from routine FFPE nonneoplastic Barrett's esophagus samples can detect multiple mutations in minute areas of BIM with high analytical sensitivity. Next-generation sequencing panels for detection of TP53 and possibly combined mutations in other genes, such as APC and CDKN2A, may be useful in the clinical setting to improve dysplasia and cancer surveillance in patients with Barrett's esophagus.
Background and Aims Chronic HCV infection is a leading etiologic driver of cirrhosis and ultimately HCC. Of the approximately 71 million individuals chronically infected with HCV, 10%‐20% are expected to develop severe liver complications in their lifetime. Epigenetic mechanisms including DNA methylation and histone modifications become profoundly disrupted in disease processes including liver disease. Approach and Results To understand how HCV infection influences the epigenome and whether these events remain as “scars” following cure of chronic HCV infection, we mapped genome‐wide DNA methylation, four key regulatory histone modifications (H3K4me3, H3K4me1, H3K27ac, and H3K27me3), and open chromatin in parental and HCV‐infected immortalized hepatocytes and the Huh7.5 HCC cell line, along with DNA methylation and gene‐expression analyses following elimination of HCV in these models through treatment with interferon‐α (IFN‐α) or a direct‐acting antiviral (DAA). Our data demonstrate that HCV infection profoundly affects the epigenome (particularly enhancers); HCV shares epigenetic targets with interferon‐α targets; and an overwhelming majority of epigenetic changes induced by HCV remain as “scars” on the epigenome following viral cure. Similar findings are observed in primary human patient samples cured of chronic HCV infection. Supplementation of IFN‐α/DAA antiviral regimens with DNA methyltransferase inhibitor 5‐aza‐2’‐deoxycytidine synergizes in reverting aberrant DNA methylation induced by HCV. Finally, both HCV‐infected and cured cells displayed a blunted immune response, demonstrating a functional effect of epigenetic scarring. Conclusions Integration of epigenetic and transcriptional data elucidate key gene deregulation events driven by HCV infection and how this may underpin the long‐term elevated risk for HCC in patients cured of HCV due to epigenome scarring.
Over the last 50 years, a number of important physiological changes in humans who have traveled on spaceflights have been catalogued. Of major concern are the short-and long-term radiationinduced injuries to the hematopoietic system that may be induced by high-energy galactic cosmic rays encountered on interplanetary space missions. To collect data on the effects of space radiation on the human hematopoietic system in vivo, we used a humanized mouse model. In this study, we irradiated humanized mice with 0.4 Gy of 350 MeV/n 28 Si ions, a dose that has been shown to induce tumors in tumor-prone mice and a reference dose that has a relative biological effectiveness of 1 (1 Gy of 250-kVp X rays). Cell counts, cell subset frequency and cytogenetic data were collected from bone marrow spleen and blood of irradiated and control mice at short-term (7, 30 and 60 days) and long-term (6-7 months) time points postirradiation. The data show a significant short-term effect on the human hematopoietic stem cell counts imparted by both high-and low-LET radiation exposure. The radiation effects on bone marrow, spleen and blood human cell counts and human cell subset frequency were complex but did not alter the functions of the hematopoietic system. The long-term data acquired from high-LET irradiated mice showed complete recovery of the human hematopoietic system in all hematopoietic compartments. The combined results demonstrate that, in spite of early perturbation, the longer term effects of high-LET radiation are not detrimental to human hematopoiesis in our system of study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.