Montelukast, a leukotriene receptor antagonist commonly prescribed for treatment of asthma, is primarily metabolized by cytochrome P450 (CYP)2C8, and has been suggested as a probe substrate for investigating CYP2C8 activity in vivo. We evaluated the quantitative role of hepatic uptake transport in its pharmacokinetics and drug-drug interactions (DDIs). Montelukast was characterized with significant active uptake in human hepatocytes, and showed affinity towards organic anion transporting polypeptides (OATPs) in transfected cell systems. Single-dose rifampicin, an OATP inhibitor, decreased montelukast clearance in rats and monkeys. Clinical DDIs of montelukast were evaluated using physiologically based pharmacokinetic modeling; and simulation of the interactions with gemfibrozil-CYP2C8 and OATP1B1/1B3 inhibitor, clarithromycin-CYP3A and OATP1B1/1B3 inhibitor, and itraconazole-CYP3A inhibitor, implicated OATPs-CYP2C8-CYP2C8 interplay as the primary determinant of montelukast pharmacokinetics. In conclusion, hepatic uptake plays a key role in the pharmacokinetics of montelukast, which should be taken into account when interpreting clinical interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.