Prolonged hypotension during pheochromocytoma resection is a significant complication. We sought to investigate the predictors of prolonged hypotension in patients with pheochromocytoma undergoing laparoscopic adrenalectomy (LA). Patients with pheochromocytoma who underwent LA between 2012 and 2015 were surveyed. Patients were considered to have prolonged hypotension if they had a mean arterial blood pressure <60 mmHg or required ≥30 consecutive minutes of catecholamine support intraoperatively. Among 123 patients, 54 (43.9%) developed prolonged hypotension requiring ≥30 consecutive minutes of catecholamine support. Compared with patients with nonprolonged hypotension, those with prolonged hypotension had higher levels of urinary norepinephrine (P = 0.011), epinephrine (P < 0.001), and dopamine (P = 0.019) preoperatively, and a higher incidence of vital organ injury postoperatively (P = 0.039). Multivariate logistic analysis showed that independent predictors for prolonged hypotension were multiples of the normal reference upper limit value of urinary epinephrine (odds ratio, 1.180; 95% confidence interval, 1.035–1.345) and dopamine (odds ratio, 4.375; 95% confidence interval, 1.207–15.855). The levels of preoperative urinary epinephrine and dopamine are clinical predictors for prolonged hypotension in patients with pheochromocytoma undergoing LA. Using these parameters, clinicians can assess and manage this patient population more effectively.
Enhanced late sodium current (late INa) and intracellular Nav1.5 redistribution contribute to ischemia/reperfusion (I/R)-induced arrhythmias. Ranolazine can reduce lethal arrhythmias by inhibiting late INa. However, little is known regarding its role in regulating the distribution of Nav1.5 during I/R. Therefore, we investigated the roles of ranolazine in post-I/R Nav1.5 expression and distribution in myocardium. Male Sprague Dawley rats were randomly assigned to 4 groups: sham, I/R, Ran Pre, and Ran Delay. Electrocardiogram and arterial pressure were recorded during the procedure. Nav1.5 mRNA and protein levels in peri-infarct cardiac tissue were determined by real-time polymerase chain reaction, Western blotting, and immunofluorescence. To further confirm the regulation of ranolazine on Nav1.5, GS967, another late INa inhibitor was used. Both pre- and delayed ranolazine treatments significantly reduced the incidence of severe ventricular arrhythmias, along with shortened corrected QT interval by 29.55% and QRS duration by 18.38% during I/R. The protein level of Nav1.5 decreased by 31.63% after I/R. Ranolazine and GS967 remained Nav1.5 protein expression and Nav1.5 redistribution on intercalated discs and lateral membranes, without affecting Nav1.5 mRNA level. In conclusion, upregulating Nav1.5 expression and redistribution on the intercalated discs and lateral membranes of cardiomyocytes may underlie the antiarrhythmic effects of ranolazine in I/R rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.