a b s t r a c tThis paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force (the 'Euler-Lorentz' system). When the magnetic field is large, or equivalently, when the parameter e representing the nondimensional ion cyclotron frequency tends to zero, the so-called drift-fluid (or gyro-fluid) approximation is obtained. In this limit, the parallel motion relative to the magnetic field direction splits from perpendicular motion and is given implicitly by the constraint of zero total force along the magnetic field lines. In this paper, we provide a well-posed elliptic equation for the parallel velocity which in turn allows us to construct an Asymptotic-Preserving (AP) scheme for the Euler-Lorentz system. This scheme gives rise to both a consistent approximation of the Euler-Lorentz model when e is finite and a consistent approximation of the drift limit when e ! 0. Above all, it does not require any constraint on the space and time-steps related to the small value of e. Numerical results are presented, which confirm the AP character of the scheme and its Asymptotic Stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.