The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB’s search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB’s ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.
One year after identifying the first case of the 2019 coronavirus disease (COVID-19) in Canada, federal and provincial governments are still struggling to manage the pandemic. Provincial governments across Canada have experimented with widely varying policies in order to limit the burden of COVID-19. However, to date, the effectiveness of these policies has been difficult to ascertain. This is partly due to the lack of a publicly available, high-quality dataset on COVID-19 interventions and outcomes for Canada. The present paper provides a dataset containing important, Canadian-specific data that is known to affect COVID-19 outcomes, including sociodemographic, climatic, mobility and health system related information for all 10 Canadian provinces and their health regions. This dataset also includes longitudinal data on the daily number of COVID-19 cases, deaths, and the constantly changing intervention policies that have been implemented by each province in an attempt to control the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.