One of the interesting marine products to be explored is flying fish (Hirundichthys oxycephalus) roes. The flying fish roe is usually called tobiko. The aim of this study is to extract protein from tobiko filaments using an isoelectric point approach, analyze their chemical properties, and apply them to the nutrification of rice-corn milk. Extraction of tobiko filaments using an isoelectric point approach resulted in an optimal pH of 8.5 based on the protein content (73.52 ± 0.07 %). Extraction under alkaline conditions (pH 8.5) resulted in a protein concentrate yield of 9.04% and an insoluble portion of 69.79%. That protein concentrate showed 15 amino acid, leucin (5.86 ± 0.01%), lycin (3.69 ± 0.02%), valin (3.41 ± 0.02%), isoleucine (3.33 ± 0.01%), threonine (2.86 ± 0.01%), phenylalanine (2.30 ± 0.02%), histidine (1.38 ± 0.01%), and methionine (1.21 ± 0.01%), glutamate (7.08 ± 0.01%), arginine (6.11 ± 0.01%), alanine (3.82 ± 0.01%), aspartic acid (3.75 ± 0.01%), serine (3.05 ± 0.02%), glycine (1.84 ± 0.01%), and tyrosine (1.46 ± 0.01%). The addition of protein concentrate from tobiko filament showed an increase in protein content in rice-corn milk so the purpose of nutrification in this study was successful. The best formulation is in the composition of rice: corn: protein concentrate (15:5:3%) with details of moisture content 65.07 ± 0.02%, ash content 0.50 ± 0.01%, the lipid content 0.28 ± 0.02%, the protein content 21.18 ± 0.02 %, the carbohydrate content 12.95 ± 0.02%, with a total energy 278.13 ± 0.03 kcal.
Cooking oil is one of the basic human needs. Improving the quality of bulk cooking oil is necessary because it is related to economic reason. The bulk cooking oil have a lower price than brand package oil, of course. Based on these reasons, research is needed on the use of antioxidants to improve the quality of bulk cooking oil. This study aims to identify the phytochemicals of bay leaves extract through TOF profiling, analysis of iodine number and acid number of bay leaves extract against bulk cooking oil. TOF profiling was carried out to see whether bay leaves had chemical compounds that supported antioxidant activity which had an impact on the inhibition of fat oxidation. The research consisted of 4 stages: 1) extraction and fractionation of bay leaves, 2) TOF profiling of bay leaves extract, 3) application of bay leaves extract to bulk cooking oil, 4) analysis of iodine and acid numbers. Profiling TOF of the bay leaves extract showed 3 peaks : C6H13NO5 (cyclohexanol, galactose, and fructose derivatives), C11H14O5 (pyran and furan), andC11H19NO3 (morpholine derivate). According to SNI, the acid value maximum 0.6 mg KOH/g. Iodine value minimum is 45 g I2/ 100 mL (SNI 3741 : 2013). Based of this data standart, this study recommended use bay leaves extract in concentration 0.80%. The addition of bay leaves extract as much as 0.80% showed an iodine number of 48.2 g I2/100 mL and an acid number of 0.34 mg KOH/g where the positive control TBHQ showed an iodine number of 48.7 g I2/100 mL and an acid number of 0.19 mg KOH/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.