SummaryLocal translation regulates the axonal proteome, playing an important role in neuronal wiring and axon maintenance. How axonal mRNAs are localized to specific subcellular sites for translation, however, is not understood. Here we report that RNA granules associate with endosomes along the axons of retinal ganglion cells. RNA-bearing Rab7a late endosomes also associate with ribosomes, and real-time translation imaging reveals that they are sites of local protein synthesis. We show that RNA-bearing late endosomes often pause on mitochondria and that mRNAs encoding proteins for mitochondrial function are translated on Rab7a endosomes. Disruption of Rab7a function with Rab7a mutants, including those associated with Charcot-Marie-Tooth type 2B neuropathy, markedly decreases axonal protein synthesis, impairs mitochondrial function, and compromises axonal viability. Our findings thus reveal that late endosomes interact with RNA granules, translation machinery, and mitochondria and suggest that they serve as sites for regulating the supply of nascent pro-survival proteins in axons.
An important question in early neural development is the origin of stochastic nuclear movement between apical and basal surfaces of neuroepithelia during interkinetic nuclear migration. Tracking of nuclear subpopulations has shown evidence of diffusion - mean squared displacements growing linearly in time - and suggested crowding from cell division at the apical surface drives basalward motion. Yet, this hypothesis has not yet been tested, and the forces involved not quantified. We employ long-term, rapid light-sheet and two-photon imaging of early zebrafish retinogenesis to track entire populations of nuclei within the tissue. The time-varying concentration profiles show clear evidence of crowding as nuclei reach close-packing and are quantitatively described by a nonlinear diffusion model. Considerations of nuclear motion constrained inside the enveloping cell membrane show that concentration-dependent stochastic forces inside cells, compatible in magnitude to those found in cytoskeletal transport, can explain the observed magnitude of the diffusion constant.
The world of health care has witnessed an explosive boost to its capacity within the past few decades due to the introduction of viral therapeutics to its medicinal arsenal. As a result, a need for new methods of viral quantification has arisen to accommodate this rapid advancement in virology and associated requirements for efficiency, speed, and quality control. In this work, we apply viral quantitative capillary electrophoresis (viral qCE) to determine (i) the number of intact virus particles (ivp) in viral samples, (ii) the amount of DNA contamination, and (iii) the degree of viral degradation after sonication, vortexing, and freeze-thaw cycles. This quantification method is demonstrated on an RNA-based vesicular stomatitis virus (VSV) with oncolytic properties. A virus sample contains intact VSV particles as well as residual DNA from host cells, which is regulated by WHO guidelines, and may include some carried-over RNA. We use capillary zone electrophoresis with laser-induced fluorescent detection to separate intact virus particles from DNA and RNA impurities. YOYO-1 dye is used to stain all DNA and RNA in the sample. After soft lysis of VSV with proteinase K digestion of viral capsid and ribonucleoproteins, viral RNA is released. Therefore, the initial concentration of intact virus is calculated based on the gain of a nucleic acid peak and an RNA calibration curve. After additional NaOH treatment of the virus sample, RNA is hydrolyzed leaving residual DNA only, which is also calculated by a DNA calibration curve made by the same CE instrument. Viral qCE works in a wide dynamic range of virus concentrations from 10(8) to 10(13) ivp/mL. It can be completed in a few hours and requires minimum optimization of CE separation.
The Registry of Standard Biological Parts imposes sequence constraints to enable DNA assembly using restriction enzymes. Alnahhas et al. (Journal of Biological Engineering 2014, 8:28) recently argued that these constraints should be revised because they impose an unnecessary burden on contributors that use homology-based assembly. To add to this debate, we tested four different homology-based methods, and found that students using these methods on their first attempt have a high probability of success. Because of their ease of use and high success rates, we believe that homology-based assembly is a best practice of Synthetic Biology, and recommend that the Registry implement the changes proposed by Alnahhas et al. to better support their use.Electronic supplementary materialThe online version of this article (doi:10.1186/s13036-015-0006-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.