Open data initiatives are a crucial aspect of effective e-governance strategy. They embody aspirations towards sociopolitical values of transparency, trust, confidence, and accountability, pertaining to the relationship between a government and its citizens. The importance of such initiatives is especially important for an emerging economy such as Saudi Arabia which is undergoing rapid social changes directed by a contemporary national vision. The effectiveness of open data initiatives depends strongly on (a) the quality of the data available, (b) the soundness of the methodologies and suitability of platforms used to prepare and present the data, and (c) the ability of the data to facilitate the kinds of insights and social-action that are sought from that data to ensure successful e-governance. This paper investigates the feasibility of current Saudi government open data initiatives in this regard. It assesses existing approaches to improve the effectiveness of open government data through transforming it into linked-open data (using the Resource Description Framework [RDF]) by connecting disparate sources of structured data therein. It proposes to improve existing approaches by suggesting a framework for automating the linking sub-process of existing approaches and organizing the data to be queried through SPARQL. Moreover, it evaluates the potential benefit of this proposal by discussing the kinds of policy insights this could generate which would be difficult without it.
Due to the wide-ranging development of data-oriented sustainable systems in the government and the public sectors, the development of such sustainable systems is replete with potential. The ultimate focus of developing these sustainable systems is to provide citizens with transparency, accountability, awareness as well as a single point of query for asking integrated and smart queries. In view of these benefits, the Saudi government has taken the initiative to publish and develop sustainable open data-oriented information systems. However some major challenges in the Saudi Government Open Data are that the (1) data are published and available in different formats such as Excel sheets, CSV files (Comma Separated Values), images, scanned documents and social media sources such as Twitter, (2) datasets from different government departments are not linked with each other or to existing datasets in Linked Open Data Cloud (even though they have strong links with each other), and (3) there is no SPARQL Endpoint that can be used to pose smart semantic-based queries to Saudi Government Data. This paper is part of an ongoing research project to present a framework that can be used to transfer the government data from different sources to RDF format. The framework can also be used to clean and classify/map the data according to the Saudi Government Ontology. We also describe our approach for semiautomatically linking Saudi Government Datasets with one another as well as with other existing open datasets, thus resulting in the Saudi Linked Open Government Data Cloud (SLOGDC). Finally, taking the topic “Public’s Response to Women’s Driving in Saudi Arabia” as a case study, we demonstrate the SLOGD SPARQL Endpoint as a data-oriented system by executing different queries and analyzing results of these queries. This work also contributes new insights into women’s driving in Saudi Arabia using the SLOGDC, thus suggesting the way forward in shaping policies for decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.