Immobilization of biological molecules and cells on nanofibers is widely used in many applications ranging from medical to environmental applications. Immobilization materials provide cells with protection and surface for adhesion which in turn increases their efficiency for a particular application and stability over a longer period. Bioremediation of oil spills has recently become popular since scientists have developed processes that rely on cost-effectiveness and efficacy in crude oil treatments. For improved and sustainable performance of bioremediation, the system requires the development of cost-effective carrier substrates which undergo slow biodegradability and present a limited negative impact on the environment. Immobilization of bacteria on electrospun polymeric fibers is a recent research development aided by advances in nanotechnology. This could revolutionize bioremediation, treating the problem of crude oil spill pollution. In this review, we discuss the use of electrospinning to manufacture nanofibers entrapping and encapsulating bacterial cells for effective crude oil spill bioremediation. We go further to explain the recent developments in nanofiber technology with special emphasis on the correlation between method of electrospinning and relevant morphology of the formed fibers.
Objectives/Scope
The objectives of this project are to develop novel and more efficient materials to be used as sorbents for crude oil spills and to explore their potential for retrieval.
Methods, Procedures, Process
A number of remedies have been explored for the collection of spilled crude oil, which is one of the major environmental problems. Sorbents of different forms are being used as one of these remedies. However, adsorbed oil spill and used sorbents provide a secondary source of pollution. In our laboratories, we have developed polymeric nanofibrous sorbents that showed a high affinity towards the sorption of spilled crude oil. Moreover, the water-free adsorbed oil as well as the used sorbent were completely recycled into a homogenous solution that can be added to the refinery feedstock.
Results, Observations, Conclusions
Polymeric materials of various origins were converted into micro- and nanofibrous sorbents using a novel nanotechnology approach. Those fibers are characterized by their high surface area, and interconnected porosities. The homogeneity of the fiber size and pore size distributions was optimized in order to maintain a high degree of reproducibility. Fibrous sorbents were therefor applied to crude oil spills that were intentionally made over a simulated sea water medium. Results showed that sorption of the crude oil spill started within seconds of contact between the fibrous sorbent and the spilled oil. The water-free adsorbed oil showed a sorption capacity of up to 217 g/g of the fibrous sorbent. Moreover, the adsorbed oil as well as the used fibrous sorbent were completely converted to a homogeneous solution that can be directly forwarded as a feedstock to the refinery, hence provide a high economic value of retrieving the spilled oil and minimizing secondary sources of pollution.
Novel/Additive Information
The current approach is solely developed and tested in our laboratories and provides a more efficient approach to the cleanup and retrieval of crude oil spills from aqueous media. Our sorbents are competitively less expensive than those imported with a higher sorption efficiency. Moreover, our approach provides an additional solution to spilled oil and used sorbents through their recycling and re-use in the refinery feedstock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.