Words are the essence of communication: They are the building blocks of any language. Learning the meaning of words is thus one of the most important aspects of language acquisition: Children must first learn words before they can combine them into complex utterances. Many theories have been developed to explain the impressive efficiency of young children in acquiring the vocabulary of their language, as well as the developmental patterns observed in the course of lexical acquisition. A major source of disagreement among the different theories is whether children are equipped with special mechanisms and biases for word learning, or their general cognitive abilities are adequate for the task. We present a novel computational model of early word learning to shed light on the mechanisms that might be at work in this process. The model learns word meanings as probabilistic associations between words and semantic elements, using an incremental and probabilistic learning mechanism, and drawing only on general cognitive abilities. The results presented here demonstrate that much about word meanings can be learned from naturally occurring child-directed utterances (paired with meaning representations), without using any special biases or constraints, and without any explicit developmental changes in the underlying learning mechanism. Furthermore, our model provides explanations for the occasionally contradictory child experimental data, and offers predictions for the behavior of young word learners in novel situations.
We present a visually grounded model of speech perception which projects spoken utterances and images to a joint semantic space. We use a multi-layer recurrent highway network to model the temporal nature of spoken speech, and show that it learns to extract both form and meaningbased linguistic knowledge from the input signal. We carry out an in-depth analysis of the representations used by different components of the trained model and show that encoding of semantic aspects tends to become richer as we go up the hierarchy of layers, whereas encoding of formrelated aspects of the language input tends to initially increase and then plateau or decrease.
We present novel methods for analyzing the activation patterns of RNNs from a linguistic point of view and explore the types of linguistic structure they learn. As a case study, we use a multi-task gated recurrent network architecture consisting of two parallel pathways with shared word embeddings trained on predicting the representations of the visual scene corresponding to an input sentence, and predicting the next word in the same sentence. Based on our proposed method to estimate the amount of contribution of individual tokens in the input to the final prediction of the networks we show that the image prediction pathway: a) is sensitive to the information structure of the sentence b) pays selective attention to lexical categories and grammatical functions that carry semantic information c) learns to treat the same input token differently depending on its grammatical functions in the sentence. In contrast the language model is comparatively more sensitive to words with a syntactic function. Furthermore, we propose methods to explore the function of individual hidden units in RNNs and show that the two pathways of the architecture in our case study contain specialized units tuned to patterns informative for the task, some of which can carry activations to later time steps to encode long-term dependencies.
How children go about learning the general regularities that govern language, as well as keeping track of the exceptions to them, remains one of the challenging open questions in the cognitive science of language. Computational modeling is an important methodology in research aimed at addressing this issue. We must determine appropriate learning mechanisms that can grasp generalizations from examples of specific usages, and that exhibit patterns of behavior over the course of learning similar to those in children. Early learning of verb argument structure is an area of language acquisition that provides an interesting testbed for such approaches due to the complexity of verb usages. A range of linguistic factors interact in determining the felicitous use of a verb in various constructionsassociations between syntactic forms and properties of meaning that form the basis for a number of linguistic and psycholinguistic theories of language. This article presents a computational model for the representation, acquisition, and use of verbs and constructions. The Bayesian framework is founded on a novel view of constructions as a probabilistic association between syntactic and semantic features. The computational experiments reported here demonstrate the feasibility of learning general constructions, and their exceptions, from individual usages of verbs. The behavior of the model over the timecourse of acquisition mimics, in relevant aspects, the stages of learning exhibited by children. Therefore, this proposal sheds light on the possible mechanisms at work in forming linguistic generalizations and maintaining knowledge of exceptions.
We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same semantic space. We perform a number of analyses on how information about individual phonemes is encoded in the MFCC features extracted from the speech signal, and the activations of the layers of the model. Via experiments with phoneme decoding and phoneme discrimination we show that phoneme representations are most salient in the lower layers of the model, where low-level signals are processed at a fine-grained level, although a large amount of phonological information is retain at the top recurrent layer. We further find out that the attention mechanism following the top recurrent layer significantly attenuates encoding of phonology and makes the utterance embeddings much more invariant to synonymy. Moreover, a hierarchical clustering of phoneme representations learned by the network shows an organizational structure of phonemes similar to those proposed in linguistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.