High-throughput DNA sequencing has proven invaluable for investigating diverse environmental and host-associated microbial communities. In this Review, we discuss emerging strategies for microbial community analysis that complement and expand traditional metagenomic profiling. These include novel DNA sequencing strategies for identifying strain-level microbial variation and community temporal dynamics; measuring additional multi'omic data types that better capture community functional activity, such as transcriptomics, proteomics, and metabolomics; and combining multiple forms of multi'omic data in an integrated framework. We highlight studies in which the multi'omics approach has led to improved mechanistic models of microbial community structure and function.
Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we profiled the Boston subway system, which provides 238 million trips per year overseen by the Massachusetts Bay Transportation Authority (MBTA). This yielded the first high-precision microbial survey of a variety of surfaces, ridership environments, and microbiological functions (including tests for potential pathogenicity) in a mass transit environment. Characterizing microbial profiles for multiple transit systems will become increasingly important for biosurveillance of antibiotic resistance genes or pathogens, which can be early indicators for outbreak or sanitation events. Understanding how human contact, materials, and the environment affect microbial profiles may eventually allow us to rationally design public spaces to sustain our health in the presence of microbial reservoirs.
Human-associated microbes are the source of many bioactive microbial products (proteins and metabolites) that play key functions both in human host pathways and in microbe-microbe interactions. Culture-independent studies now provide an accelerated means of exploring novel bioactives in the human microbiome; however, intriguingly, a substantial fraction of the microbial metagenome cannot be mapped to annotated genes or isolate genomes and is thus of unknown function. Meta'omic approaches, including metagenomic sequencing, metatranscriptomics, metabolomics, and integration of multiple assay types, represent an opportunity to efficiently explore this large pool of potential therapeutics. In combination with appropriate follow-up validation, high-throughput culture-independent assays can be combined with computational approaches to identify and characterize novel and biologically interesting microbial products. Here, we briefly review the state of microbial product identification and characterization and discuss possible next steps to catalog and leverage the large uncharted fraction of the microbial metagenome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.