The change in stomatal conductance measured soon after durum wheat (Triticum turgidum ssp. durum Desf.) was exposed to salinity was verified as an indicator of osmotic stress tolerance. It was a reliable and useful screening technique for identifying genotypic variation. The minimum NaCl treatment needed to obtain a significant stomatal response was 50 mM, but 150 mM was needed to obtain significant differences between genotypes. The response to the NaCl was osmotic rather than Na+-specific. Stomatal conductance responded similarly to iso-osmotic concentrations of KCl and NaCl, both in the speed and extent of closure, and in the difference between genotypes. The new reduced rate of stomatal conductance in response to addition of 50 mM NaCl or KCl occurred within 45 min, and was independent of the concentration of Na+ in leaves. The difference between genotypes was long-lasting, translating into differences in shoot biomass and tiller number after a month. These results indicate that the relative size of the change in stomatal conductance when the salinity is introduced could be a means of screening for osmotic stress tolerance in wheat and other cereals.
Salinity as well as drought are increasing problems in agriculture. Durum wheat (Triticum turgidum L. ssp. durum Desf.) is relatively salt sensitive compared with bread wheat (Triticum aestivum L.), and yields poorly on saline soil. Field studies indicate that roots of durum wheat do not proliferate as extensively as bread wheat in saline soil. In order to look for genetic diversity in root growth within durum wheat, a screening method was developed to identify genetic variation in rates of root growth in a saline solution gradient similar to that found in many saline fields. Seedlings were grown in rolls of germination paper in plastic tubes 37 cm tall, with a gradient of salt concentration increasing towards the bottom of the tubes which contained from 50-200 mM NaCl with complete nutrients. Seedlings were grown in the light to the two leaf stage, and transpiration and evaporation were minimized so that the salinity gradient was maintained. An NaCl concentration of 150 mM at the bottom was found suitable to identify genetic variation. This corresponds to a level of salinity in the field that reduces shoot growth by 50% or more. The screen inhibited seminal axile root length more than branch root length in three out of four genotypes, highlighting changes in root system architecture caused by a saline gradient that is genotype dependent. This method can be extended to other species to identify variation in root elongation in response to gradients in salt, nutrients, or toxic elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.