This paper aims to develop a machine learning and deep learning-based real-time framework for detecting and recognizing human faces in closed-circuit television (CCTV) images. The traditional CCTV system needs a human for 24/7 monitoring, which is costly and insufficient. The automatic recognition system of faces in CCTV images with minimum human intervention and reduced cost can help many organizations, such as law enforcement, identifying the suspects, missing people, and people entering a restricted territory. However, image-based recognition has many issues, such as scaling, rotation, cluttered backgrounds, and variation in light intensity. This paper aims to develop a CCTV image-based human face recognition system using different techniques for feature extraction and face recognition. The proposed system includes image acquisition from CCTV, image preprocessing, face detection, localization, extraction from the acquired images, and recognition. We use two feature extraction algorithms, principal component analysis (PCA) and convolutional neural network (CNN). We use and compare the performance of the algorithms K-nearest neighbor (KNN), decision tree, random forest, and CNN. The recognition is done by applying these techniques to the dataset with more than 40K acquired real-time images at different settings such as light level, rotation, and scaling for simulation and performance evaluation. Finally, we recognized faces with a minimum computing time and an accuracy of more than 90%.
The last decade’s developments in sensor technologies and artificial intelligence applications have received extensive attention for daily life activity recognition. Autism spectrum disorder (ASD) in children is a neurological development disorder that causes significant impairments in social interaction, communication, and sensory action deficiency. Children with ASD have deficits in memory, emotion, cognition, and social skills. ASD affects children’s communication skills and speaking abilities. ASD children have restricted interests and repetitive behavior. They can communicate in sign language but have difficulties communicating with others as not everyone knows sign language. This paper proposes a body-worn multi-sensor-based Internet of Things (IoT) platform using machine learning to recognize the complex sign language of speech-impaired children. Optimal sensor location is essential in extracting the features, as variations in placement result in an interpretation of recognition accuracy. We acquire the time-series data of sensors, extract various time-domain and frequency-domain features, and evaluate different classifiers for recognizing ASD children’s gestures. We compare in terms of accuracy the decision tree (DT), random forest, artificial neural network (ANN), and k-nearest neighbour (KNN) classifiers to recognize ASD children’s gestures, and the results showed more than 96% recognition accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.