The selection of a drill bit is an essential issue in well planning. Furthermore, identification and evaluation of sedimentary rocks before well drilling plays a crucial role in choosing the drill bit. Moreover, the Markov chain as a stochastic model is one of the powerful methods for identifying lithological units, which is based on the calculation of the transition probability matrix or transition matrix. The Markov chain experiences transitions from one state (a situation or set of values) to another according to specified probabilistic rules. In this paper, the Markov chain was implemented for bit selection in a formation with different sedimentary facies (such as the Dashtak Formation). Therefore, the proper drill bit was proposed by utilizing the transition matrix of rock facies and the available bits. This process was carried out in two wells where the thicknesses of the Dashtak Formation are 960 meters and 1410 meters. Consequently, the results indicate that the Markov chain is a practical method for selecting bits in a sequence of rock facies based on an acceptable matching between the reality mode (the used bits in the well) and the Markov chain results. Besides, in the case of using an improper bit in a well, and using a bit in a washing and reaming operation, there were differences between the used bits and the Markov chain outputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.