Blasting operations create significant problems to residential and other structures located in the close proximity of the mines. Blast vibration is one of the most crucial nuisances of blasting, which should be accurately estimated to minimize its effect. In this paper, an attempt has been made to apply various models to predict ground vibrations due to mine blasting. To fulfill this aim, 112 blast operations were precisely measured and collected in one the limestone mines of Iran. These blast operation data were utilized to construct the artificial neural network (ANN) model to predict the peak particle velocity (PPV). The input parameters used in this study were burden, spacing, maximum charge per delay, distance from blast face to monitoring point and rock quality designation and output parameter was the PPV. The conventional empirical predictors and multivariate regression analysis were also performed on the same data sets to study the PPV. Accordingly, it was observed that the ANN model is more accurate as compared to the other employed predictors. Moreover, it was also revealed that the most influential parameters on the ground vibration are distance from the blast and maximum charge per delay, whereas the least effective parameters are burden, spacing and rock quality designation (RQD). Finally, in order to minimize PPV, the developed ANN model was used as an objective function for imperialist competitive algorithm (ICA). Eventually, it was found that the ICA algorithm is able to decrease PPV up to 59% by considering burden of 2.9m, spacing of 4.4m and charge per delay of 627Kg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.