In this paper, an Iterative Learning Control (ILC) scheme is presented for the control of the shape of the output probability density functions (PDF) for a class of stochastic systems in which the relationship between approximation basis functions and the control input is linear, and the stochastic system is not necessarily Gaussian. A Radial Basis Function Neural Network (RBFNN) has been employed for the output PDF approximation and the coefficients of the approximation are linearly related to the control input. A three-stage method for the ILC-based PDF control is proposed which incorporates a) identifying PDF model parameters; b) calculating the control input; and c) updating RFBN parameters. The latter is accomplished based on P-type ILC law and the difference of the desired and calculated output PDF within a batch. Conditions for the convergent ILC rules have been derived. Simulation results are included to demonstrate the effectiveness of proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.